scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances

12 Jun 2012-Advanced Materials (WILEY‐VCH Verlag)-Vol. 24, Iss: 22, pp 2945-2986
TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.
Citations
More filters
Journal ArticleDOI
TL;DR: This work reveals an increase in the residual in-plane stress during pore collapse, which lays the foundation for further understanding of the stress-related mechanical properties of mesoporous thin films.
Abstract: Ordered mesoporous thin films of TiO2 and CexZr1−xO2 (x = 0, 0.5, 1) were prepared via an evaporation-induced self-assembly (EISA) process and subsequently investigated in terms of the developing intrinsic and residual in-plane stress. These mechanical properties were determined by the curvature method, which is based on the determination of the deflection of light due to concave or convex bending of the films on a substrate. The films were investigated with regard to the intrinsic stress during heat treatment up to 500 °C and to the residual stress at room temperature for several annealing temperatures. Following this strategy, the influence of the decomposition of a block copolymer template on the intrinsic stress as well as the pore collapsing on the residual stress was analyzed. Nanoporous TiO2 thin films were prepared using two different block copolymers (PIB50-b-PEO45 and Pluronic® F127). A comparison between the templated and non-templated TiO2 films showed the lowest intrinsic and residual stress for the ordered mesoporous material prepared with PIB50-b-PEO45 indicating that the distributed polymer and the corresponding mesopores act as relaxing agents for the system. This was verified by mesoporous CexZr1−xO2 (x = 0, 0.5, 1) thin films showing a comparable behavior in terms of the experienced intrinsic stress. This work reveals an increase in the residual in-plane stress during pore collapse, which lays the foundation for further understanding of the stress-related mechanical properties of mesoporous thin films.

17 citations

Journal ArticleDOI
TL;DR: The ability to tune the work function of the microplates is demonstrated and an intriguing way to engineer the electrical properties of nanostructures is suggested.
Abstract: We synthesized black SnO single-crystal microplates via a sonochemical process and engineered the work function of the SnO microplates using thermal treatments. The as-synthesized SnO microplates have a wide (001) plane, as is clearly evident from TEM images and diffraction patterns. Surface potential measurements on the SnO microplates show that the work function changes as the annealing temperature increases. The TEM and XAS results after thermal treatments imply that the micro-sized SnO(001) single-crystals are stable up to about 400 °C in air, after which the surface starts to become locally oxidized. Consequently, the long-range ordering and lattice parameter of the SnO(001) single crystals started to change to make polycrystalline SnO2 at about 600 °C. These results demonstrate the ability to tune the work function of the microplates and suggest an intriguing way to engineer the electrical properties of nanostructures.

17 citations

Journal ArticleDOI
25 Sep 2020
TL;DR: ConspectusFlexible integrated circuits, working as the core unit of information processing, have been a subject of extensive research; they are essential to realize fully flexible electronic system.
Abstract: ConspectusFlexible integrated circuits, working as the core unit of information processing, have been a subject of extensive research; they are essential to realize fully flexible electronic system...

17 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review on development and future trends in zinc oxide thin film transistors (ZnO TFTs) is presented, which highlights the need of high-k dielectrics for low leakage and low threshold voltage in ZnOTFTs.
Abstract: Purpose The purpose of this paper is to present a comprehensive review on development and future trends in zinc oxide thin film transistors (ZnO TFTs). This paper presents the development of TFT technology starting from amorphous silicon, poly-Si to ZnO TFTs. This paper also discusses about transport and device modeling of ZnO TFT and provides a comparative analysis with other TFTs on the basis of performance parameters. Design/methodology/approach It highlights the need of high–k dielectrics for low leakage and low threshold voltage in ZnO TFTs. This paper also explains the effect of grain boundaries, trap densities and threshold voltage shift on the performance of ZnO TFT. Moreover, it also addresses the challenges like requirement of stable p-type ZnO semiconductor for various electronic applications and high value of ZnO mobility to meet growing demand of high-definition light emitting diode TV (HD-LED TV). Findings This review will motivate the readers to further investigate the conduction mechanism, best alternate for gate-dielectric and the deposition technique optimization for the enhancement of the performance of ZnO TFTs. Originality/value This is a literature review. The technological evolution of TFT in general and ZnO TFT in particular is presented in this paper.

17 citations

Journal ArticleDOI
TL;DR: In this article, the ink should have suitable values of viscosity, surface tension, density, and vapor pressure to satisfy the requirements for stable drop formation and pattern formation, and the substrate properties are discussed from the points of view of wetting and stability of the printed patterns.
Abstract: The inkjet printing of functional oxide nanostructures from solutions provides many advantages when compared to conventionally used top-down patterning methods. It does not require masks and—as the material is deposited only where and when needed—any material-removal steps are not needed. This contributes to reduced waste, cost, and time required to fabricate the device. Despite its apparent simplicity, the inkjet printing process offers many challenges, including the ink chemistry, ink-substrate interaction, and drying; these are discussed in the present review. The ink should have suitable values of viscosity, surface tension, density, and vapor pressure to fulfil the requirements for stable drop formation and pattern formation. The substrate properties are discussed from the points of view of wetting and stability of the printed patterns. Drying of wet deposits without build-up of the material at the edges via the coffee-stain effect is a critical step and strategies to overcome it are discussed. Finally, the potential of inkjet printing technology in many different applications is discussed.

17 citations

References
More filters
Journal ArticleDOI
25 Nov 2004-Nature
TL;DR: A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Abstract: Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2,3,4,5 and organic semiconductors2,6,7,8,9,10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.

7,301 citations

Book
04 Jul 1990
TL;DR: In this article, the authors present a characterization of the resistivity of a two-point-versus-four-point probe in terms of the number of contacts and the amount of contacts in the probe.
Abstract: Preface to Third Edition. 1 Resistivity. 1.1 Introduction. 1.2 Two-Point Versus Four-Point Probe. 1.3 Wafer Mapping. 1.4 Resistivity Profiling. 1.5 Contactless Methods. 1.6 Conductivity Type. 1.7 Strengths and Weaknesses. Appendix 1.1 Resistivity as a Function of Doping Density. Appendix 1.2 Intrinsic Carrier Density. References. Problems. Review Questions. 2 Carrier and Doping Density. 2.1 Introduction. 2.2 Capacitance-Voltage (C-V). 2.3 Current-Voltage (I-V). 2.4 Measurement Errors and Precautions. 2.5 Hall Effect. 2.6 Optical Techniques. 2.7 Secondary Ion Mass Spectrometry (SIMS). 2.8 Rutherford Backscattering (RBS). 2.9 Lateral Profiling. 2.10 Strengths and Weaknesses. Appendix 2.1 Parallel or Series Connection? Appendix 2.2 Circuit Conversion. References. Problems. Review Questions. 3 Contact Resistance and Schottky Barriers. 3.1 Introduction. 3.2 Metal-Semiconductor Contacts. 3.3 Contact Resistance. 3.4 Measurement Techniques. 3.5 Schottky Barrier Height. 3.6 Comparison of Methods. 3.7 Strengths and Weaknesses. Appendix 3.1 Effect of Parasitic Resistance. Appendix 3.2 Alloys for Contacts to Semiconductors. References. Problems. Review Questions. 4 Series Resistance, Channel Length and Width, and Threshold Voltage. 4.1 Introduction. 4.2 PN Junction Diodes. 4.3 Schottky Barrier Diodes. 4.4 Solar Cells. 4.5 Bipolar Junction Transistors. 4.6 MOSFETS. 4.7 MESFETS and MODFETS. 4.8 Threshold Voltage. 4.9 Pseudo MOSFET. 4.10 Strengths and Weaknesses. Appendix 4.1 Schottky Diode Current-Voltage Equation. References. Problems. Review Questions. 5 Defects. 5.1 Introduction. 5.2 Generation-Recombination Statistics. 5.3 Capacitance Measurements. 5.4 Current Measurements. 5.5 Charge Measurements. 5.6 Deep-Level Transient Spectroscopy (DLTS). 5.7 Thermally Stimulated Capacitance and Current. 5.8 Positron Annihilation Spectroscopy (PAS). 5.9 Strengths and Weaknesses. Appendix 5.1 Activation Energy and Capture Cross-Section. Appendix 5.2 Time Constant Extraction. Appendix 5.3 Si and GaAs Data. References. Problems. Review Questions. 6 Oxide and Interface Trapped Charges, Oxide Thickness. 6.1 Introduction. 6.2 Fixed, Oxide Trapped, and Mobile Oxide Charge. 6.3 Interface Trapped Charge. 6.4 Oxide Thickness. 6.5 Strengths and Weaknesses. Appendix 6.1 Capacitance Measurement Techniques. Appendix 6.2 Effect of Chuck Capacitance and Leakage Current. References. Problems. Review Questions. 7 Carrier Lifetimes. 7.1 Introduction. 7.2 Recombination Lifetime/Surface Recombination Velocity. 7.3 Generation Lifetime/Surface Generation Velocity. 7.4 Recombination Lifetime-Optical Measurements. 7.5 Recombination Lifetime-Electrical Measurements. 7.6 Generation Lifetime-Electrical Measurements. 7.7 Strengths and Weaknesses. Appendix 7.1 Optical Excitation. Appendix 7.2 Electrical Excitation. References. Problems. Review Questions. 8 Mobility. 8.1 Introduction. 8.2 Conductivity Mobility. 8.3 Hall Effect and Mobility. 8.4 Magnetoresistance Mobility. 8.5 Time-of-Flight Drift Mobility. 8.6 MOSFET Mobility. 8.7 Contactless Mobility. 8.8 Strengths and Weaknesses. Appendix 8.1 Semiconductor Bulk Mobilities. Appendix 8.2 Semiconductor Surface Mobilities. Appendix 8.3 Effect of Channel Frequency Response. Appendix 8.4 Effect of Interface Trapped Charge. References. Problems. Review Questions. 9 Charge-based and Probe Characterization. 9.1 Introduction. 9.2 Background. 9.3 Surface Charging. 9.4 The Kelvin Probe. 9.5 Applications. 9.6 Scanning Probe Microscopy (SPM). 9.7 Strengths and Weaknesses. References. Problems. Review Questions. 10 Optical Characterization. 10.1 Introduction. 10.2 Optical Microscopy. 10.3 Ellipsometry. 10.4 Transmission. 10.5 Reflection. 10.6 Light Scattering. 10.7 Modulation Spectroscopy. 10.8 Line Width. 10.9 Photoluminescence (PL). 10.10 Raman Spectroscopy. 10.11 Strengths and Weaknesses. Appendix 10.1 Transmission Equations. Appendix 10.2 Absorption Coefficients and Refractive Indices for Selected Semiconductors. References. Problems. Review Questions. 11 Chemical and Physical Characterization. 11.1 Introduction. 11.2 Electron Beam Techniques. 11.3 Ion Beam Techniques. 11.4 X-Ray and Gamma-Ray Techniques. 11.5 Strengths and Weaknesses. Appendix 11.1 Selected Features of Some Analytical Techniques. References. Problems. Review Questions. 12 Reliability and Failure Analysis. 12.1 Introduction. 12.2 Failure Times and Acceleration Factors. 12.3 Distribution Functions. 12.4 Reliability Concerns. 12.5 Failure Analysis Characterization Techniques. 12.6 Strengths and Weaknesses. Appendix 12.1 Gate Currents. References. Problems. Review Questions. Appendix 1 List of Symbols. Appendix 2 Abbreviations and Acronyms. Index.

6,573 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Abstract: Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success...

5,711 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of organic thin-film transistors (OTFTs) and discuss progress in the growing field of n-type OTFTs.
Abstract: Organic thin-film transistors (OTFTs) have lived to see great improvements in recent years. This review presents new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of OTFTs. The shifted focus in research from novel chemical structures to fabrication technologies that optimize morphology and structural order is underscored by chapters on vacuum-deposited and solution-processed organic semiconducting films. Finally, progress in the growing field of the n-type OTFTs is discussed in ample detail. The Figure, showing a pentacene film edge on SiO2, illustrates the morphology issue.

4,804 citations

Journal ArticleDOI
TL;DR: An outlook is presented on what will be required to drive this young photovoltaic technology towards the next major milestone, a 10% power conversion efficiency, considered by many to represent the efficiency at which OPV can be adopted in wide-spread applications.
Abstract: Solution-processed bulk-heterojunction solar cells have gained serious attention during the last few years and are becoming established as one of the future photovoltaic technologies for low-cost power production. This article reviews the highlights of the last few years, and summarizes today's state-of-the-art performance. An outlook is given on relevant future materials and technologies that have the potential to guide this young photovoltaic technology towards the magic 10% regime. A cost model supplements the technical discussions, with practical aspects any photovoltaic technology needs to fulfil, and answers to the question as to whether low module costs can compensate lower lifetimes and performances.

3,084 citations