scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances

12 Jun 2012-Advanced Materials (WILEY‐VCH Verlag)-Vol. 24, Iss: 22, pp 2945-2986
TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.
Citations
More filters
Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations

Journal ArticleDOI
TL;DR: This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin- film transistors, solar cells, diodes and memories.
Abstract: Optical transparency, tunable conducting properties and easy processability make metal oxides key materials for advanced optoelectronic devices. This Review discusses recent advances in the synthesis of these materials and their use in applications. Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III–V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p–n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

1,098 citations

Journal ArticleDOI
TL;DR: This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions.
Abstract: Solution combustion is an exciting phenomenon, which involves propagation of self-sustained exothermic reactions along an aqueous or sol–gel media. This process allows for the synthesis of a variety of nanoscale materials, including oxides, metals, alloys, and sulfides. This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years. Thermodynamics and kinetics of reactive solutions used in different chemical routes are considered, and the role of process parameters is discussed, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions. The basic principles for controlling the composition, structure, and nanostructure of SCS products, and routes to regulate the size and morphology of the nanoscale materials are also reviewed. Recently developed systems that lead to the formation of novel materials and unique structures (e.g., thin films and two-dimensional crystals) with unusual...

841 citations

Journal ArticleDOI
TL;DR: In this review, recent progress in materials and devices for future wearable sensor technologies for bio and medical applications are reported.
Abstract: Printable electronics present a new era of wearable electronic technologies. Detailed technologies consisting of novel ink semiconductor materials, flexible substrates, and unique processing methods can be integrated to create flexible sensors. To detect various stimuli of the human body, as well as specific environments, unique electronic devices formed by "ink-based semiconductors" onto flexible and/or stretchable substrates have become a major research trend in recent years. Materials such as inorganic, organic, and hybrid semiconductors with various structures (i.e., 1D, 2D and 3D) with printing capabilities have been considered for bio and medical applications. In this review, we report recent progress in materials and devices for future wearable sensor technologies.

589 citations

Journal ArticleDOI
TL;DR: In this article, the recent progress in n-and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p type, and the major milestones already achieved with this emerging and very promising technology are summarized.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.

529 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used amorphous oxides of post-transition metals: indium, gallium, and zinc for the channel materials are fabricated with radio-frequency magnetron sputtering methods for the deposition of the channel and the gate insulator layers, at room temperature with no high-temperature post-deposition annealing process.

176 citations

Journal ArticleDOI
TL;DR: In this paper, constantvoltage bias (VDS = VGS = 30 V) stress measurements are performed for a period of 105 s on thin-film transistors (TFTs) with amorphous indium-gallium-zincoxide (IGZO) channel layers fabricated via RF sputtering using a postdeposition annealing temperature of 200degC, 250degC or 300degC.
Abstract: Constant-voltage-bias (VDS = VGS = 30 V) stress measurements are performed for a period of 105 s on thin-film transistors (TFTs) with amorphous indium-gallium-zinc-oxide (IGZO) channel layers fabricated via RF sputtering using a postdeposition annealing temperature of 200degC, 250degC, or 300degC. Thermal silicon dioxide is employed as a TFT bottom-gate insulator. All SiO2/IGZO TFTs tested exhibit the following: 1) a positive rigid log(ID)- VGS transfer curve shift; 2) a continuous drain-current decrease over the entire stress duration; and 3) recovery of the log(ID)-VGS transfer curve toward the prestressed state when the stressed TFT is left unbiased in the dark at room temperature for an extended period of time. The SiO2/IGZO TFTs subjected to a higher postdeposition annealing temperature are more stable. A small (and typically negligible) amount of clockwise hysteresis is present in the log(ID) -VGS transfer curves of IGZO TFTs. These instability and hysteresis observations are consistent with a SiO2/ IGZO TFT instability mechanism involving electron trapping within the IGZO channel layer.

170 citations

Journal ArticleDOI
TL;DR: In this article, a fabrication process of coplanar homojunction thin-film transistors (TFTs) is proposed for amorphous In-Ga-Zn-O (a-IGZO), which employs highly doped contact regions naturally formed by deposition of upper protection layers made of hydrogenated silicon nitride (SiNX:H).
Abstract: A fabrication process of coplanar homojunction thin-film transistors (TFTs) is proposed for amorphous In–Ga–Zn–O (a-IGZO), which employs highly doped contact regions naturally formed by deposition of upper protection layers made of hydrogenated silicon nitride (SiNX:H). The direct deposition of SiNX:H reduced the resistivity of the semiconductive a-IGZO layer down to 6.2×10−3 Ω cm and formed a nearly ideal Ohmic contact with a low parasitic source-to-drain resistance of 34 Ω cm. Simple evaluation of field-effect mobilities (μsat) overestimated their values especially for short-channel TFTs, while the channel resistance method proved that μsat was almost constant at 9.5 cm2 V−1 s−1.

169 citations

Journal Article
TL;DR: In this paper, single-crystalline In2O3 nanowires were synthesized and then utilized to construct field effect transistors consisting of individual nanwires. But the performance of these nanowire transistors exhibited nice n-type semiconductor characteristics with well-defined linear and saturation regimes.
Abstract: Single-crystalline In2O3 nanowires were synthesized and then utilized to construct field-effect transistors consisting of individual nanowires. These nanowire transistors exhibited nice n-type semiconductor characteristics with well-defined linear and saturation regimes, and on/off ratios as high as 104 were observed at room temperature. The temperature dependence of the conductance revealed thermal emission as the dominating transport mechanism. Oxygen molecules adsorbed on the nanowire surface were found to have profound effects, as manifested by a substantial improvement of the device performance in high vacuum. Our work paved the way for In2O3 nanowires to be used as nanoelectronic building blocks and nanosensors.

169 citations

Journal ArticleDOI
TL;DR: Electronic systems on fl exible substrates posses the advantage of mechanical fl exibility in actual use, but also provide more rugged rollable devices and may therefore result in lower manufacturing costs associated with continuous roll-to-roll fabrication and lowtemperature solution processing is strongly desirable.
Abstract: Electronic systems on fl exible substrates posses the advantage of mechanical fl exibility in actual use, but also provide more rugged rollable devices and may therefore result in lower manufacturing costs associated with continuous roll-to-roll fabrication. To realize these advantages of fl exible electronics, lowtemperature solution processing is strongly desirable. In this regard, organic semiconductor materials have been extensively researched. [ 1 ] Organic semiconductor polymers are soluble in a variety of solvents, and small molecules can be derivatized to soluble precursors. Organic transistors can also be fabricated by solution processing near room temperature, [ 2 ] compatible with temperature-sensitive plastic substrates. [ 3–5 ] Despite successful demonstrations of fl exible organic electronics, however, they are generally sensitive to operating conditions and are unstable during long-term operation. [ 6 ]

168 citations