scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances

12 Jun 2012-Advanced Materials (WILEY‐VCH Verlag)-Vol. 24, Iss: 22, pp 2945-2986
TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.
Citations
More filters
Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations

Journal ArticleDOI
TL;DR: This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin- film transistors, solar cells, diodes and memories.
Abstract: Optical transparency, tunable conducting properties and easy processability make metal oxides key materials for advanced optoelectronic devices. This Review discusses recent advances in the synthesis of these materials and their use in applications. Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III–V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p–n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

1,098 citations

Journal ArticleDOI
TL;DR: This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions.
Abstract: Solution combustion is an exciting phenomenon, which involves propagation of self-sustained exothermic reactions along an aqueous or sol–gel media. This process allows for the synthesis of a variety of nanoscale materials, including oxides, metals, alloys, and sulfides. This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years. Thermodynamics and kinetics of reactive solutions used in different chemical routes are considered, and the role of process parameters is discussed, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions. The basic principles for controlling the composition, structure, and nanostructure of SCS products, and routes to regulate the size and morphology of the nanoscale materials are also reviewed. Recently developed systems that lead to the formation of novel materials and unique structures (e.g., thin films and two-dimensional crystals) with unusual...

841 citations

Journal ArticleDOI
TL;DR: In this review, recent progress in materials and devices for future wearable sensor technologies for bio and medical applications are reported.
Abstract: Printable electronics present a new era of wearable electronic technologies. Detailed technologies consisting of novel ink semiconductor materials, flexible substrates, and unique processing methods can be integrated to create flexible sensors. To detect various stimuli of the human body, as well as specific environments, unique electronic devices formed by "ink-based semiconductors" onto flexible and/or stretchable substrates have become a major research trend in recent years. Materials such as inorganic, organic, and hybrid semiconductors with various structures (i.e., 1D, 2D and 3D) with printing capabilities have been considered for bio and medical applications. In this review, we report recent progress in materials and devices for future wearable sensor technologies.

589 citations

Journal ArticleDOI
TL;DR: In this article, the recent progress in n-and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p type, and the major milestones already achieved with this emerging and very promising technology are summarized.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.

529 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors introduce a bosonization scheme for strongly interacting electrons, allowing them to generalize the description to account for the presence of an open boundary, and they find that the charge sector power-law scaling is highly sensitive to the boundary.
Abstract: The spin-incoherent regime of one-dimensional electrons has recently been explored using the Bethe ansatz and a bosonized path integral approach, revealing that the spin incoherence dramatically influences the correlations of charge excitations. We here introduce a bosonization scheme for strongly interacting electrons, allowing us to generalize the description to account for the presence of an open boundary. By calculating the single-electron Green's function we find that the charge sector power-law scaling is highly sensitive to the boundary. Our result allows for a detailed description of the crossover between boundary and bulk regimes. We predict that scanning tunneling microscopy on a spin-incoherent system will pick up oscillations in the differential tunneling conductance as a function of the applied voltage V at "intermediate" distances x from a real or a dynamically generated boundary. The wavelength of the oscillations, pi v(c)/x, probes the speed v(c) of the charge excitations, and therefore the strength of the electron-electron interaction.

21 citations

Journal ArticleDOI
TL;DR: In this article, a field effect transistor was fabricated on Cu wire, where the metal-semiconductor Schottky junction was used as a gate barrier with Pt Ohmic contacts for source and drain.
Abstract: A Cu2O-based field effect transistor was fabricated on Cu wire Thermal oxidation of Cu forms Cu–Cu2O core-shell structure, where the metal-semiconductor Schottky junction was used as a gate barrier with Pt Ohmic contacts for source and drain The device was coated with polydimethylsiloxane (PDMS) to protect from contamination and demonstrated as a humidity sensor The cylindrical structure of the Cu wire and the transistor function enable embedding of simple circuits into textile which can potentially offer smart textile for wearable computing, environmental sensing, and monitoring of human vital signs

21 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared the electrical properties of inverted-coplanar-type InGaZnO thin-film transistors (IGZO TFTs) deposited by RF sputtering at room temperature on a thermally grown SiO2 gate dielectric or a hafnium oxide (HfO2) gate Dielectric.

21 citations

Journal ArticleDOI
01 Jan 2007
TL;DR: In this paper, the transition from tin monoxide to tin dioxide was investigated by doping a low pressure premixed H2/O2/Ar flame with dil. concns of tetra-Me tin (TMT) Sn(CH3)4.
Abstract: The transition from tin monoxide to tin dioxide is investigated by doping a low pressure premixed H2/O2/Ar flame with dil. concns. of tetra-Me tin (TMT) Sn(CH3)4. The H2/O2 ratio was varied between 1.97 and 0.97; the reactor pressure was set to 30 mbar. The inlet gas velocity was kept const. and the precursor concn. was varied between 200 and 700 ppm. Mean particle diams. between 3 nm? dp? 7 nm were measured using a particle mass spectrometer (PMS), while X-ray diffraction (XRD) and transmission electron microscope (TEM) anal. revealed information on crystal structure as well as morphol. of the synthesized oxides. A gray SnO film was obsd. in the reactor at low oxygen concns., while for higher oxygen concns. light yellow sub-stoichiometric tin oxides and white SnO2 were obtained. Further anal. of the sub-stoichiometric oxides, using at. electron spectroscopy AES revealed that SnO2-x (0.2? x? 0.6) was obtained. Furthermore, elec. characterization of all materials, deposited on interdigital capacitors, showed a decrease in the cond. of the nanoparticles with increasing oxidn. (decreasing x).

21 citations

Journal ArticleDOI
TL;DR: In this article, a series of top-gate transparent thin-film transistors based on amorphous-indium-gallium-zincoxide (a-IGZO) semiconductors have been fabricated and investigated.
Abstract: — Amorphous-oxide-semiconductor thin-film transistors (TFTs) have gained wide attention in recent years due to their many merits. In this paper, a series of top-gate transparent thin-film transistors (TFTs) based on amorphous-indium—gallium—zinc—oxide (a-IGZO) semiconductors have been fabricated and investigated. Specifically, low-temperature SiNx and SiOx were used as the gate insulator and different Ar/O2 gas-flow ratios were used for a-IGZO channel deposition to study the influences of gate insulators and channel-deposition conditions. In addition to the investigation of device performance, the stability of these TFTs was also examined by applying constant-current stressing. It was found that a high mobility of 30-45 cm2/V-sec and small threshold-voltage shift in constant-current stressing can be achieved using SiNx with suitable hydrogen-content stoichiometry as the gate insulator and the carefully adjusted Ar/O2 flow ratio for channel deposition. These results may be associated with hydrogen incorporation into the channel, the lower defect trap density, and the better water/oxygen barrier properties (impermeability) of the low-temperature SiNx.

20 citations