scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances

12 Jun 2012-Advanced Materials (WILEY‐VCH Verlag)-Vol. 24, Iss: 22, pp 2945-2986
TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.
Citations
More filters
Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations

Journal ArticleDOI
TL;DR: This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin- film transistors, solar cells, diodes and memories.
Abstract: Optical transparency, tunable conducting properties and easy processability make metal oxides key materials for advanced optoelectronic devices. This Review discusses recent advances in the synthesis of these materials and their use in applications. Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III–V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p–n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

1,098 citations

Journal ArticleDOI
TL;DR: This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions.
Abstract: Solution combustion is an exciting phenomenon, which involves propagation of self-sustained exothermic reactions along an aqueous or sol–gel media. This process allows for the synthesis of a variety of nanoscale materials, including oxides, metals, alloys, and sulfides. This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years. Thermodynamics and kinetics of reactive solutions used in different chemical routes are considered, and the role of process parameters is discussed, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions. The basic principles for controlling the composition, structure, and nanostructure of SCS products, and routes to regulate the size and morphology of the nanoscale materials are also reviewed. Recently developed systems that lead to the formation of novel materials and unique structures (e.g., thin films and two-dimensional crystals) with unusual...

841 citations

Journal ArticleDOI
TL;DR: In this review, recent progress in materials and devices for future wearable sensor technologies for bio and medical applications are reported.
Abstract: Printable electronics present a new era of wearable electronic technologies. Detailed technologies consisting of novel ink semiconductor materials, flexible substrates, and unique processing methods can be integrated to create flexible sensors. To detect various stimuli of the human body, as well as specific environments, unique electronic devices formed by "ink-based semiconductors" onto flexible and/or stretchable substrates have become a major research trend in recent years. Materials such as inorganic, organic, and hybrid semiconductors with various structures (i.e., 1D, 2D and 3D) with printing capabilities have been considered for bio and medical applications. In this review, we report recent progress in materials and devices for future wearable sensor technologies.

589 citations

Journal ArticleDOI
TL;DR: In this article, the recent progress in n-and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p type, and the major milestones already achieved with this emerging and very promising technology are summarized.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.

529 citations

References
More filters
Journal ArticleDOI
Robert A. Street1
TL;DR: In this paper, an intense search has developed for new materials and fabrication techniques that can improve the performance, lower manufacturing cost, and enable new functionality of TFTs, including organic semiconductor, metal oxides, nanowires, printing technology as well as thin-film silicon materials with new properties.
Abstract: Thin-film transistors (TFTs) matured later than silicon integrated circuits, but in the past 15 years the technology has grown into a huge industry based on display applications, with amorphous and polycrystalline silicon as the incumbent technology. Recently, an intense search has developed for new materials and new fabrication techniques that can improve the performance, lower manufacturing cost, and enable new functionality. There are now many new options – organic semiconductor (OSCs), metal oxides, nanowires, printing technology as well as thin-film silicon materials with new properties. All of the new materials have something to offer but none is entirely without technical problems.

530 citations

Journal ArticleDOI
TL;DR: This work results in a new generation of high-performance liquid chromatography beads that are able to withstand high-temperature conditions and have low viscosity at low temperatures.
Abstract: [*] Prof. T. J. Marks, Dr. A. Facchetti, Dr. S. Jeong, Y.-G. Ha Department of Chemistry and the Materials Research Center Northwestern University 2145 Sheridan Road, Evanston, IL 60208 (USA) E-mail: t-marks@northwestern.edu; a-facchetti@northwestern.edu Prof. J. Moon Department of Materials Science and Engineering Yonsei University 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea) [+] Present address: Korea Research Institute of Chemical Technology, 19 Sinseongno, Yuseong, Daejeon 305-600 (Korea)

499 citations

Journal ArticleDOI
TL;DR: In this paper, the experimental and modeling study of bias-stress-induced threshold voltage instabilities in amorphous indium-gallium-zinc oxide thin film transistors is reported.
Abstract: The experimental and modeling study of bias-stress-induced threshold voltage instabilities in amorphous indium-gallium-zinc oxide thin film transistors is reported. Positive stress results in a positive shift in the threshold voltage, while the transfer curve hardly moves when negative stress is induced. The time evolution of threshold voltage is described by the stretched-exponential equation, and the shift is attributed to the electron injection from the channel into interface/dielectric traps. The stress amplitudes and stress temperatures are considered as important factors in threshold voltage instabilities, and the stretched-exponential equation is well fitted in various bias temperature stress conditions.

472 citations

Journal ArticleDOI
TL;DR: Inorganic solids with wide bandgaps are usually classified as electrical insulators and are used in industry as insulators, dielectrics, and optical materials as mentioned in this paper, however, interest in these wide-gap oxides as conductive materials has not been strong.
Abstract: Inorganic solids with wide bandgaps are usually classified as electrical insulators and are used in industry as insulators, dielectrics, and optical materials. Many metallic oxides have wide bandgaps because of the significant contribution of ionic character to the chemical bonds between metallic cations and oxide ions. Their ionic nature simultaneously suppresses the formation of easily ionizable shallow donors or acceptors and enhances the localization of electrons and positive holes. Thus it is understandable that interest in these wide-gap oxides as conductive materials has not been strong.

472 citations

Journal ArticleDOI
TL;DR: By controlling the shape of the nanocrystals from spheres to rods the semiconducting properties of spin-coated ZnO films can be much improved as a result of increasing particle size and self-alignment of thenanorods along the substrate.
Abstract: Colloidal zinc oxide (ZnO) nanocrystals are attractive candidates for a low-temperature and solution-processible semiconductor for high-performance thin-film field-effect transistors (TFTs). Here we show that by controlling the shape of the nanocrystals from spheres to rods the semiconducting properties of spin-coated ZnO films can be much improved as a result of increasing particle size and self-alignment of the nanorods along the substrate. Postdeposition hydrothermal growth in an aqueous zinc ion solution has been found to further enhance grain size and connectivity and improve device performance. TFT devices made from 65-nm-long and 10-nm-wide nanorods deposited by spin coating have been fabricated at moderate temperatures of 230 °C with mobilities of 0.61 cm2V-1s-1 and on/off ratios of 3 × 105 after postdeposition growth, which is comparable to the characteristics of TFTs fabricated by traditional sputtering methods.

469 citations