scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

P-Rank: a comprehensive structural similarity measure over information networks

TL;DR: A new similarity measure, P-Rank (Penetrating Rank), toward effectively computing the structural similarities of entities in real information networks and a fixed point algorithm to reinforce structural similarity of vertex pairs beyond the localized neighborhood scope toward the entire information network is proposed.
Abstract: With the ubiquity of information networks and their broad applications, the issue of similarity computation between entities of an information network arises and draws extensive research interests. However, to effectively and comprehensively measure "how similar two entities are within an information network" is nontrivial, and the problem becomes even more challenging when the information network to be examined is massive and diverse. In this paper, we propose a new similarity measure, P-Rank (Penetrating Rank), toward effectively computing the structural similarities of entities in real information networks. P-Rank enriches the well-known similarity measure, SimRank, by jointly encoding both in- and out-link relationships into structural similarity computation. P-Rank is proven to be a unified structural similarity framework, under which all state-of-the-art similarity measures, including CoCitation, Coupling, Amsler and SimRank, are just its special cases. Based on its recursive nature of P-Rank, we propose a fixed point algorithm to reinforce structural similarity of vertex pairs beyond the localized neighborhood scope toward the entire information network. Our experimental studies demonstrate the power of P-Rank as an effective similarity measure in different information networks. Meanwhile, under the same time/space complexity, P-Rank outperforms SimRank as a comprehensive and more meaningful structural similarity measure, especially in large real information networks.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This survey aims to provide a general, comprehensive, and structured overview of the state-of-the-art methods for anomaly detection in data represented as graphs, and gives a general framework for the algorithms categorized under various settings.
Abstract: Detecting anomalies in data is a vital task, with numerous high-impact applications in areas such as security, finance, health care, and law enforcement. While numerous techniques have been developed in past years for spotting outliers and anomalies in unstructured collections of multi-dimensional points, with graph data becoming ubiquitous, techniques for structured graph data have been of focus recently. As objects in graphs have long-range correlations, a suite of novel technology has been developed for anomaly detection in graph data. This survey aims to provide a general, comprehensive, and structured overview of the state-of-the-art methods for anomaly detection in data represented as graphs. As a key contribution, we give a general framework for the algorithms categorized under various settings: unsupervised versus (semi-)supervised approaches, for static versus dynamic graphs, for attributed versus plain graphs. We highlight the effectiveness, scalability, generality, and robustness aspects of the methods. What is more, we stress the importance of anomaly attribution and highlight the major techniques that facilitate digging out the root cause, or the `why', of the detected anomalies for further analysis and sense-making. Finally, we present several real-world applications of graph-based anomaly detection in diverse domains, including financial, auction, computer traffic, and social networks. We conclude our survey with a discussion on open theoretical and practical challenges in the field.

998 citations


Cites background from "P-Rank: a comprehensive structural ..."

  • ...rting from the two nodes are expected to meet each other by randomly walking “backwards” in the graph. Several variants of SimRank are also proposed by [Antonellis et al., 2008, Chen and Giles, 2013, Zhao et al., 2009]. Finally, many link prediction approaches essentially quantify the similarity or closeness of pairs of nodes in the graph. Several such measures of varying computational complexity exist. The simple...

    [...]

  • ...Several variants of SimRank are also proposed by [Antonellis et al., 2008, Chen and Giles, 2013, Zhao et al., 2009]....

    [...]

Posted Content
TL;DR: A comprehensive survey of the state-of-the-art methods for anomaly detection in data represented as graphs can be found in this article, where the authors highlight the effectiveness, scalability, generality, and robustness aspects of the methods.
Abstract: Detecting anomalies in data is a vital task, with numerous high-impact applications in areas such as security, finance, health care, and law enforcement. While numerous techniques have been developed in past years for spotting outliers and anomalies in unstructured collections of multi-dimensional points, with graph data becoming ubiquitous, techniques for structured {\em graph} data have been of focus recently. As objects in graphs have long-range correlations, a suite of novel technology has been developed for anomaly detection in graph data. This survey aims to provide a general, comprehensive, and structured overview of the state-of-the-art methods for anomaly detection in data represented as graphs. As a key contribution, we provide a comprehensive exploration of both data mining and machine learning algorithms for these {\em detection} tasks. we give a general framework for the algorithms categorized under various settings: unsupervised vs. (semi-)supervised approaches, for static vs. dynamic graphs, for attributed vs. plain graphs. We highlight the effectiveness, scalability, generality, and robustness aspects of the methods. What is more, we stress the importance of anomaly {\em attribution} and highlight the major techniques that facilitate digging out the root cause, or the `why', of the detected anomalies for further analysis and sense-making. Finally, we present several real-world applications of graph-based anomaly detection in diverse domains, including financial, auction, computer traffic, and social networks. We conclude our survey with a discussion on open theoretical and practical challenges in the field.

703 citations

Proceedings ArticleDOI
10 Aug 2015
TL;DR: It is demonstrated that the rich content and linkage information in a heterogeneous network can be captured by a multi-resolution deep embedding function, so that similarities among cross-modal data can be measured directly in a common embedding space.
Abstract: Data embedding is used in many machine learning applications to create low-dimensional feature representations, which preserves the structure of data points in their original space. In this paper, we examine the scenario of a heterogeneous network with nodes and content of various types. Such networks are notoriously difficult to mine because of the bewildering combination of heterogeneous contents and structures. The creation of a multidimensional embedding of such data opens the door to the use of a wide variety of off-the-shelf mining techniques for multidimensional data. Despite the importance of this problem, limited efforts have been made on embedding a network of scalable, dynamic and heterogeneous data. In such cases, both the content and linkage structure provide important cues for creating a unified feature representation of the underlying network. In this paper, we design a deep embedding algorithm for networked data. A highly nonlinear multi-layered embedding function is used to capture the complex interactions between the heterogeneous data in a network. Our goal is to create a multi-resolution deep embedding function, that reflects both the local and global network structures, and makes the resulting embedding useful for a variety of data mining tasks. In particular, we demonstrate that the rich content and linkage information in a heterogeneous network can be captured by such an approach, so that similarities among cross-modal data can be measured directly in a common embedding space. Once this goal has been achieved, a wide variety of data mining problems can be solved by applying off-the-shelf algorithms designed for handling vector representations. Our experiments on real-world network datasets show the effectiveness and scalability of the proposed algorithm as compared to the state-of-the-art embedding methods.

594 citations


Cites background from "P-Rank: a comprehensive structural ..."

  • ...Current research has focused on either pre-defined feature vectors [42] or sophisticated graph-based algorithms [48] to solve the underlying tasks....

    [...]

Journal ArticleDOI
TL;DR: A novel multiscale framework that models all brain networks generated over every possible threshold and is based on persistent homology and its various representations such as the Rips filtration, barcodes, and dendrograms to quantify various persistent topological features at different scales in a coherent manner.
Abstract: The brain network is usually constructed by estimating the connectivity matrix and thresholding it at an arbitrary level. The problem with this standard method is that we do not have any generally accepted criteria for determining a proper threshold. Thus, we propose a novel multiscale framework that models all brain networks generated over every possible threshold. Our approach is based on persistent homology and its various representations such as the Rips filtration, barcodes, and dendrograms. This new persistent homological framework enables us to quantify various persistent topological features at different scales in a coherent manner. The barcode is used to quantify and visualize the evolutionary changes of topological features such as the Betti numbers over different scales. By incorporating additional geometric information to the barcode, we obtain a single linkage dendrogram that shows the overall evolution of the network. The difference between the two networks is then measured by the Gromov-Hausdorff distance over the dendrograms. As an illustration, we modeled and differentiated the FDG-PET based functional brain networks of 24 attention-deficit hyperactivity disorder children, 26 autism spectrum disorder children, and 11 pediatric control subjects.

237 citations


Cites background from "P-Rank: a comprehensive structural ..."

  • ...Other several network similarity measures such as the vertex similarity, graphlet degree distribution or P-Rank were not included [53]–[55]....

    [...]

Proceedings ArticleDOI
13 Aug 2017
TL;DR: This paper represents the Android applications, related APIs, and their rich relationships as a structured heterogeneous information network (HIN) as well as creating higher-level semantics which require more effort for attackers to evade the detection of Android malware.
Abstract: With explosive growth of Android malware and due to the severity of its damages to smart phone users, the detection of Android malware has become increasingly important in cybersecurity. The increasing sophistication of Android malware calls for new defensive techniques that are capable against novel threats and harder to evade. In this paper, to detect Android malware, instead of using Application Programming Interface (API) calls only, we further analyze the different relationships between them and create higher-level semantics which require more effort for attackers to evade the detection. We represent the Android applications (apps), related APIs, and their rich relationships as a structured heterogeneous information network (HIN). Then we use a meta-path based approach to characterize the semantic relatedness of apps and APIs. We use each meta-path to formulate a similarity measure over Android apps, and aggregate different similarities using multi-kernel learning. Then each meta-path is automatically weighted by the learning algorithm to make predictions. To the best of our knowledge, this is the first work to use structured HIN for Android malware detection. Comprehensive experiments on real sample collections from Comodo Cloud Security Center are conducted to compare various malware detection approaches. Promising experimental results demonstrate that our developed system HinDroid outperforms other alternative Android malware detection techniques.

220 citations


Cites methods from "P-Rank: a comprehensive structural ..."

  • ...applied to scienti€c publication network analysis [17, 19, 20, 35], public general social media analysis [14, 33, 34], and document analysis based on knowledge graph [24–27]....

    [...]

References
More filters
Journal ArticleDOI
01 Apr 1998
TL;DR: This paper provides an in-depth description of Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext and looks at the problem of how to effectively deal with uncontrolled hypertext collections where anyone can publish anything they want.
Abstract: In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems. The prototype with a full text and hyperlink database of at least 24 million pages is available at http://google.stanford.edu/. To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of web pages involving a comparable number of distinct terms. They answer tens of millions of queries every day. Despite the importance of large-scale search engines on the web, very little academic research has been done on them. Furthermore, due to rapid advance in technology and web proliferation, creating a web search engine today is very different from three years ago. This paper provides an in-depth description of our large-scale web search engine -- the first such detailed public description we know of to date. Apart from the problems of scaling traditional search techniques to data of this magnitude, there are new technical challenges involved with using the additional information present in hypertext to produce better search results. This paper addresses this question of how to build a practical large-scale system which can exploit the additional information present in hypertext. Also we look at the problem of how to effectively deal with uncontrolled hypertext collections where anyone can publish anything they want.

14,696 citations


"P-Rank: a comprehensive structural ..." refers methods in this paper

  • ...[16] proposed a similarity measure based on PageRank score propagation through link paths....

    [...]

  • ...SimRank [10, 6, 17], together with its variant [2], is an iterative PageRank-like structural similarity measure for INs....

    [...]

  • ...It goes beyond simple CoCitation much as PageRank goes beyond direct linking for computing importance of web pages....

    [...]

  • ...Iterative fixed-point algorithms over the web graph, like HITS [14] and PageRank [3], have been studied and applied to compute“importance”scores for Web pages....

    [...]

Journal Article
TL;DR: Google as discussed by the authors is a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext and is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems.

13,327 citations

Book
01 Jan 1990
TL;DR: An electrical signal transmission system, applicable to the transmission of signals from trackside hot box detector equipment for railroad locomotives and rolling stock, wherein a basic pulse train is transmitted whereof the pulses are of a selected first amplitude and represent a train axle count.
Abstract: 1. Introduction. 2. Partitioning Around Medoids (Program PAM). 3. Clustering large Applications (Program CLARA). 4. Fuzzy Analysis. 5. Agglomerative Nesting (Program AGNES). 6. Divisive Analysis (Program DIANA). 7. Monothetic Analysis (Program MONA). Appendix 1. Implementation and Structure of the Programs. Appendix 2. Running the Programs. Appendix 3. Adapting the Programs to Your Needs. Appendix 4. The Program CLUSPLOT. References. Author Index. Subject Index.

10,537 citations


"P-Rank: a comprehensive structural ..." refers methods in this paper

  • ...We randomly choose 10 vertices (without replacement) as initial centers of clusters and run the K-Medoids algorithm....

    [...]

  • ...We plug P-Rank and SimRank into K-Medoids [12], respectively....

    [...]

  • ...At the beginning, we randomly choose 10 author vertices (without replacement) as initial centers of clusters and run the K-Medoids algorithm....

    [...]

  • ...We plug P-Rank and SimRank respectively as underlying similarity functions into K-Medoids (K = 10)....

    [...]

BookDOI
01 Jan 1990
TL;DR: In this article, an electrical signal transmission system for railway locomotives and rolling stock is proposed, where a basic pulse train is transmitted whereof the pulses are of a selected first amplitude and represent a train axle count, and a spike pulse of greater selected amplitude is transmitted, occurring immediately after the axle count pulse to which it relates, whenever an overheated axle box is detected.
Abstract: An electrical signal transmission system, applicable to the transmission of signals from trackside hot box detector equipment for railroad locomotives and rolling stock, wherein a basic pulse train is transmitted whereof the pulses are of a selected first amplitude and represent a train axle count, and a spike pulse of greater selected amplitude is transmitted, occurring immediately after the axle count pulse to which it relates, whenever an overheated axle box is detected. To enable the signal receiving equipment to determine on which side of a train the overheated box is located, the spike pulses are of two different amplitudes corresponding, respectively, to opposite sides of the train.

9,011 citations

Journal ArticleDOI
Jon Kleinberg1
TL;DR: This work proposes and test an algorithmic formulation of the notion of authority, based on the relationship between a set of relevant authoritative pages and the set of “hub pages” that join them together in the link structure, and has connections to the eigenvectors of certain matrices associated with the link graph.
Abstract: The network structure of a hyperlinked environment can be a rich source of information about the content of the environment, provided we have effective means for understanding it. We develop a set of algorithmic tools for extracting information from the link structures of such environments, and report on experiments that demonstrate their effectiveness in a variety of context on the World Wide Web. The central issue we address within our framework is the distillation of broad search topics, through the discovery of “authorative” information sources on such topics. We propose and test an algorithmic formulation of the notion of authority, based on the relationship between a set of relevant authoritative pages and the set of “hub pages” that join them together in the link structure. Our formulation has connections to the eigenvectors of certain matrices associated with the link graph; these connections in turn motivate additional heuristrics for link-based analysis.

8,328 citations