scispace - formally typeset
Search or ask a question
Posted Content

Parametric down-conversion photon pair source on a nanophotonic chip

TL;DR: In this paper, an on-chip parametric down-conversion source of photon pairs based on second order nonlinearity in an Aluminum nitride microring resonator is presented.
Abstract: Quantum photonic chips, which integrate quantum light sources alongside active and passive optical elements, as well as single photon detectors, show great potential for photonic quantum information processing and quantum technology. Mature semiconductor nanofabrication processes allow for scaling such photonic integrated circuits to on-chip networks of increasing complexity. Second order nonlinear materials are the method of choice for generating photonic quantum states in the overwhelming part of linear optic experiments using bulk components but integration with waveguide circuitry on a nanophotonic chip proved to be challenging. Here we demonstrate such an on-chip parametric down-conversion source of photon pairs based on second order nonlinearity in an Aluminum nitride microring resonator. We show the potential of our source for quantum information processing by measuring high-visibility antibunching of heralded single photons with nearly ideal state purity. Our down conversion source operates with high brightness and low noise, yielding pairs of correlated photons at MHz-rates with high coincidence-to-accidental ratio. The generated photon pairs are spectrally far separated from the pump field, providing good potential for realizing sufficient on-chip filtering and monolithic integration of quantum light sources, waveguide circuits and single photon detectors.
Citations
More filters
Journal ArticleDOI
TL;DR: The Review summarizes the progress of hybrid quantum photonics integration in terms of its important design considerations and fabrication approaches, and highlights some successful realizations of key physical resources for building integrated quantum devices, such as quantum teleporters, quantum repeaters and quantum simulators.
Abstract: Recent developments in chip-based photonic quantum circuits have radically impacted quantum information processing. However, it is challenging for monolithic photonic platforms to meet the stringent demands of most quantum applications. Hybrid platforms combining different photonic technologies in a single functional unit have great potential to overcome the limitations of monolithic photonic circuits. Our Review summarizes the progress of hybrid quantum photonics integration, discusses important design considerations, including optical connectivity and operation conditions, and highlights several successful realizations of key physical resources for building a quantum teleporter. We conclude by discussing the roadmap for realizing future advanced large-scale hybrid devices, beyond the solid-state platform, which hold great potential for quantum information applications. The Review summarizes the progress of hybrid quantum photonics integration in terms of its important design considerations and fabrication approaches, and highlights some successful realizations of key physical resources for building integrated quantum devices, such as quantum teleporters, quantum repeaters and quantum simulators.

404 citations

Journal ArticleDOI
TL;DR: Recent progress on the realization of energy–time entangled optical frequency combs is reviewed and how photonic integration and the use of fibre-optic telecommunications components can enable quantum state control with new functionalities, yielding unprecedented capability is discussed.
Abstract: A key challenge for quantum science and technology is to realize large-scale, precisely controllable, practical systems for non-classical secured communications, metrology and, ultimately, meaningful quantum simulation and computation. Optical frequency combs represent a powerful approach towards this goal, as they provide a very high number of temporal and frequency modes that can result in large-scale quantum systems. The generation and control of quantum optical frequency combs will enable a unique, practical and scalable framework for quantum signal and information processing. Here, we review recent progress on the realization of energy–time entangled optical frequency combs and discuss how photonic integration and the use of fibre-optic telecommunications components can enable quantum state control with new functionalities, yielding unprecedented capability. This Review describes quantum frequency combs that operate via photon entanglement, beginning with mode-locked quantum frequency combs followed by energy–time entanglement methods. The use of photonic integration and fibre-optic telecommunications components in enabling the quantum state control are also discussed.

329 citations

Journal ArticleDOI
TL;DR: The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field with a due balance between theoretical, experimental and technological results.
Abstract: Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of choice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.

297 citations

Journal ArticleDOI
20 Dec 2019
TL;DR: In this paper, a dual-resonant, periodically poled z-cut LN microring is proposed for second-harmonic generation (SHG), where quasi-phase matching is realized by field-assisted domain engineering.
Abstract: Lithium niobate (LN), dubbed by many as the silicon of photonics, has recently risen to the forefront of chip-scale nonlinear optics research since its demonstration as an ultralow-loss integrated photonics platform. Due to its significant quadratic nonlinearity (χ(2)), LN inspires many important applications such as second-harmonic generation (SHG), spontaneous parametric downconversion, and optical parametric oscillation. Here, we demonstrate high-efficiency SHG in dual-resonant, periodically poled z-cut LN microrings, where quasi-phase matching is realized by field-assisted domain engineering. Meanwhile, dual-band operation is accessed by optimizing the coupling conditions in fundamental and second-harmonic bands via a single pulley waveguide. As a result, when pumping a periodically poled LN microring in the low power regime at around 1617 nm, an on-chip SHG efficiency of 250,000%/W is achieved, a state-of-the-art value reported among current integrated photonics platforms. An absolute conversion efficiency of 15% is recorded with a low pump power of 115 μW in the waveguide. Such periodically poled LN microrings also present a versatile platform for other cavity-enhanced quasi-phase-matched χ(2) nonlinear optical processes.

194 citations

Journal ArticleDOI
TL;DR: A broad spectrum overview of the QD-based single photon emitters developed to date, from the telecommunication bands in the IR to the deep UV, can be found in this article.
Abstract: Semiconductor quantum dots (QDs) of various material systems are being heavily researched for the development of solid state single photon emitters, which are required for optical quantum computing and related technologies such as quantum key distribution and quantum metrology. In this review article, we give a broad spectrum overview of the QD-based single photon emitters developed to date, from the telecommunication bands in the IR to the deep UV.

162 citations

References
More filters
Journal ArticleDOI
11 Dec 1997-Nature
TL;DR: In this article, the authors demonstrated the feasibility of quantum teleportation over arbitrary distances of the state of a quantum system by using a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon.
Abstract: Quantum teleportation — the transmission and reconstruction over arbitrary distances of the state of a quantum system — is demonstrated experimentally. During teleportation, an initial photon which carries the polarization that is to be transferred and one of a pair of entangled photons are subjected to a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon. This latter photon can be arbitrarily far away from the initial one. Quantum teleportation will be a critical ingredient for quantum computation networks.

4,232 citations

Journal ArticleDOI
TL;DR: Type-II noncollinear phase matching in parametric down conversion produces true entanglement: No part of the wave function must be discarded, in contrast to previous schemes.
Abstract: We report on a high-intensity source of polarization-entangled photon pairs with high momentum definition. Type-II noncollinear phase matching in parametric down conversion produces true entanglement: No part of the wave function must be discarded, in contrast to previous schemes. With two-photon fringe visibilities in excess of 97%, we demonstrated a violation of Bell's inequality by over 100 standard deviations in less than 5 min. The new source allowed ready preparation of all four of the EPR-Bell states.

2,639 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the original theory and its improvements, and a few examples of experimental two-qubit gates are given, and the use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.
Abstract: Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn [2001, Nature (London) 409, 46] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. The original theory and its improvements are reviewed, and a few examples of experimental two-qubit gates are given. The use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.

2,483 citations

Journal ArticleDOI
TL;DR: A Bell test is reported that closes the most significant of loopholes that provide loopholes for a local realist explanation of quantum mechanics, using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors.
Abstract: Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74×10^{-31}, corresponding to an 11.5 standard deviation effect.

1,262 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a loophole-free violation of local realism using entangled photon pairs, ensuring that all relevant events in their Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements.
Abstract: We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarization-entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9×10^{-9} for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3×10^{-7}. We therefore reject the hypothesis that local realism governs our experiment.

1,201 citations

Related Papers (5)