Parametric Uncertainty and Random Excitation in Energy Harvesting Dynamic Vibration Absorber
01 Mar 2021-ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering (American Society of Mechanical Engineers Digital Collection)-Vol. 7, Iss: 1, pp 010905
...read more
Citations
More filters
References
More filters
Book•
[...]
01 Jan 1965
TL;DR: In this paper, a new chapter on computational methods that present the basic principles on which most modern computer programs are developed is presented, which introduces an example on rotor balancing and expands on the section on shock spectrum and isolation.
Abstract: This edition features a new chapter on computational methods that presents the basic principles on which most modern computer programs are developed It introduces an example on rotor balancing and expands on the section on shock spectrum and isolation
2,141 citations
Book•
[...]
01 Jan 1990
TL;DR: In this paper, a comprehensive account of statistical linearization with related techniques allowing the solution of a very wide variety of practical non-linear random vibration problems is given, and the principal value of these methods is that they are readily generalized to deal with complex mechanical and structural systems and complex types of excitation such as earthquakes.
Abstract: Interest in the study of random vibration problems using the concepts of stochastic process theory has grown rapidly due to the need to design structures and machinery which can operate reliably when subjected to random loads, for example winds and earthquakes. This is the first comprehensive account of statistical linearization - powerful and versatile methods with related techniques allowing the solution of a very wide variety of practical non-linear random vibration problems. The principal value of these methods is that unlike other analytical methods, they are readily generalized to deal with complex mechanical and structural systems and complex types of excitation such as earthquakes.
1,141 citations
[...]
TL;DR: In this article, three types of piezoelectric devices are investigated and experimentally tested to deter deterministic power harvesting from the vibration of a discharged nickel metal hydride battery.
Abstract: Piezoelectric materials can be used as a means of transforming ambient vibrations into electrical energy that can then be stored and used to power other devices. With the recent surge of microscale devices, piezoelectric power generation can provide a convenient alternative to traditional power sources used to operate certain types of sensors/actuators, telemetry, and MEMS devices. However, the energy produced by these materials is in many cases far too small to directly power an electrical device. Therefore, much of the research into power harvesting has focused on methods of accumulating the energy until a sufficient amount is present, allowing the intended electronics to be powered. In a recent study by Sodano et al. (2004a) the ability to take the energy generated through the vibration of a piezoelectric material was shown to be capable of recharging a discharged nickel metal hydride battery. In the present study, three types of piezoelectric devices are investigated and experimentally tested to deter...
629 citations
[...]
TL;DR: In this article, the authors highlight the role of nonlinearities in the transduction of energy harvesters under different types of excitations and investigate the conditions, in terms of excitation nature and potential shape, under which such non-linearities can be beneficial for energy harvesting.
Abstract: The last two decades have witnessed several advances in microfabrication technologies and electronics, leading to the development of small, low-power devices for wireless sensing, data transmission, actuation, and medical implants. Unfortunately, the actual implementation of such devices in their respective environment has been hindered by the lack of scalable energy sources that are necessary to power and maintain them. Batteries, which remain the most commonly used power sources, have not kept pace with the demands of these devices, especially in terms of energy density. In light of this challenge, the concept of vibratory energy harvesting has flourished in recent years as a possible alternative to provide a continuous power supply. While linear vibratory energy harvesters have received the majority of the literature’s attention, a significant body of the current research activity is focused on the concept of purposeful inclusion of nonlinearities for broadband transduction. When compared to their linear resonant counterparts, nonlinear energy harvesters have a wider steady-state frequency bandwidth, leading to a common belief that they can be utilized to improve performance in ambient environments. Through a review of the open literature, this paper highlights the role of nonlinearities in the transduction of energy harvesters under different types of excitations and investigates the conditions, in terms of excitation nature and potential shape, under which such nonlinearities can be beneficial for energy harvesting. [DOI: 10.1115/1.4026278]
554 citations
[...]
TL;DR: In this paper, the authors study energy pumping in an impulsively excited, two-degrees-of-freedom damped system with essential (nonlinearizable) nonlinearities by means of two analytical techniques.
Abstract: We study energy pumping in an impulsively excited, two-degrees-of-freedom damped system with essential (nonlinearizable) nonlinearities by means of two analytical techniques. First, we transform the equations of motion using the action-angle variables of the underlying Hamiltonian system and bring them into the form where two-frequency averaging can be applied. We then show that energy pumping is due to resonance capture in the 1:1 resonance manifold of the system, and perform a perturbation analysis in an O (√e) neighborhood of this manifold in order to study the attracting region responsible for the resonance capture. The second method is based on the assumption of 1:1 internal resonance in the fast dynamics of the system, and utilizes complexification and averaging to develop analytical approximations to the nonlinear transient responses of the system in the energy pumping regime. The results compare favorably to numerical simulations. The practical implications of the energy pumping phenomenon are discussed.
479 citations