scispace - formally typeset
Journal ArticleDOI

Parental Care and Feeding Ecology of Golden Eagle Nestlings

Michael W. Collopy
- 01 Oct 1984 - 
- Vol. 101, Iss: 4, pp 753-760
Reads0
Chats0
TLDR
The division of labor between the sexes of Golden Eagles during breeding is quantified and these activities to the food consumption of nestlings are related to theories of sexual size dimorphism and parental investment.
Abstract
-A field study of Golden Eagles (Aquila chrysaetos) nesting in and near the Snake River Birds of Prey Area was conducted during 1977-1979. Patterns of parental care differed between female and male eagles during incubation and chick rearing; males consistently captured more food throughout all phases of brood rearing (1.2 vs. 0.6 prey/day), while females typically fed and tended the offspring. During the 7th through 9th week of chick rearing, when the food requirements of nestlings were greatest, the female contributed 43% of the prey biomass. No differences were observed in mean daily capture rates between 1978 and 1979 or between parents of one-chick broods and parents of two-chick broods. Although there were no differences between the sexes in the mean weight of prey captured, there were significant differences among pairs, suggesting differences in prey availability or hunting ability. The daily food consumption of eaglets increased as chick rearing progressed and peaked between the 7th and 9th week. Comparisons between eaglets in different-sized broods revealed that individuals in multiple-chick broods received more food from adults than those in one-chick broods. Late in chick rearing, however, those chicks competing with siblings for food had lower consumption rates. Received 24 February 1984, accepted 1 May 1984. THE general nesting biology of Golden Eagles (Aquila chrysaetos) has been described by many naturalists (e.g. MacPherson 1909, Gordon 1927, Bent 1937). Several studies also have been conducted specifically on territory size (Dixon 1937), molt (Jollie 1947), and growth (Sumner 1929, 1933). More recently, research on Golden Eagles has focused on diet and food requirements (e.g. Fevold and Craighead 1958, McGahan 1967, Mollhagen et al. 1972) and nesting success (e.g. Smith and Murphy 1973, U.S.D.I. 1979). Although these studies contributed greatly to our understanding of eagle biology, none has described the relationship between nestling food consumption and parental care. In this paper, I quantify the division of labor between the sexes of Golden Eagles during breeding and relate these activities to the food consumption of nestlings. The size and total biomass of prey delivered to young by male and female eagles also are considered in relation to theories of sexual size dimorphism and parental investment. STUDY AREA AND METHODS The study was conducted along the Snake River Canyon and surrounding upland desert plateau south ' Present address: School of Forest Resources and Conservation, 118 Newins-Ziegler Hall, University of Florida, Gainesville, Florida 32611 USA. of Boise, Idaho. This 195,063-ha area, known as the Snake River Birds of Prey Area (BPA), is administered by the Bureau of Land Management and lies within the Great Basin semidesert scrub biome (Whittaker 1975). The major vegetation types in the area include big sagebrush (Artemisia tridentata) associations, grasses (Poa and Bromus spp.), and shadscale (Atriplex confertifolia). Approximately one-fifth of the BPA is cultivated. A more detailed description of the vegetation can be found in U.S.D.I. (1979) and Collopy (1980). Incubation data were collected in 1977-1979 from 11 nesting attempts. Weekly observations at each site were made from a prominent location 150-750 m from the nest, and the amounts of time each parent spent incubating or brooding were recorded. Instances of male eagles providing prey to females when relieving them from incubation also were recorded. Data during the nestling period were collected at the same four nest sites in 1978 and in 1979. Daylong observations at each study site were made once every 6 days from blinds 15-40 m away. Photographs showing unique plumage characteristics of the breeding adults in 1978 and in 1979 revealed that the same individuals nested at the same sites in both years. The sex of parents was determined from these photographs, from size differences, and from behavior. I identified parents during each nest visit by using these unique plumage characteristics and by comparing photographs of adults taken during each visit. Adults away from the nest were monitored by a second observer, so when identification of the parent on the nest seemed uncertain it was confirmed by accounting for the location and sex of its mate. For a detailed description of nestling diet and nest 753 The Auk 101: 753-760. October 1984 This content downloaded from 157.55.39.247 on Sun, 27 Mar 2016 07:03:43 UTC All use subject to http://about.jstor.org/terms 754 MICHAEL W. COLLOPY [Auk, Vol. 101 observation and visitation procedures see Collopy (1983a). Parental care of nestlings involved both sheltering and feeding. Sheltering activities included brooding and shading, and both are discussed in this paper. Both the delivery of prey to the nest and its consumption by nestlings were considered feeding activities. The parental care of each adult was analyzed in relation to the age of its offspring. Following each observation period, I measured the body weight and foot-pad size (tip of hallux to tip of middle toe on extended foot) of the chicks (Kochert 1972). Determination of the sex of each chick was made late in the nestling period when size dimorphism became obvious. All prey delivered to the nest during each observation period were identified to species and assigned to a size class. The estimated proportion of the carcass delivered and sex of the eagle delivering the prey also were recorded. I calculated prey biomass delivered to nests from the estimate of the proportion of the carcasses delivered and the species' weights (Steenhof 1983). A series of experiments on the food consumption and growth energetics of captive Golden Eagle chicks was conducted concurrently with this study (Collopy 1980). These feeding trials were designed to monitor the consumption rates of eaglets presented blacktailed jackrabbit (Lepus californicus) food ad libitum and to quantify their growth rates. Because of permit restrictions, the birds were tested only between the ages of 11 and 57 days old. Following the experiments, they were returned to foster eagle nests in the wild, from which they all successfully fledged. During the feeding trials, it was apparent that one meal each day was much larger than all others and that it represented the maximum quantity a chick that age could consume. I quantified this relationship for the two female and two male eaglets tested by expressing the maximum meal size (Y, grams) as a function of age (X, days): female: Y = -99.96 + 12.31X; R2= 0.87, P < 0.0001; male: Y = -20.76 + 7.68X; R2= 0.85, P < 0.0001. Following each meal, the percentage of the crop of each wild nestling that was full was estimated, and the amount of food consumed was calculated. Statistical procedures used to analyze data included the Chi-square test, two-sample t-test, and analysis of variance (Remington and Schork 1970). Assumptions of the normality and equal variance of the statistical models were tested; percentage data were arcsine transformed before analysis whenever they were outside the interval between 30 and 70%. All means are reported with standard errors. RESULTS Incubation.-A total of 692 daylight hours (56 observation days) of data was collected at 11 Golden Eagle nests during incubation in 19771979. At the 10 sites that hatched young, female eagles spent a significantly greater portion of the day incubating (82.6 ? 1.6%) than males did (13.8 ? 1.8%) (t = -22.90, P < 0.0001). Eggs were left exposed only 3.7 ? 0.4% of the daylight hours. In addition to performing the majority of the daytime incubation, only females incubated at night. Overall, males relieved incubating females 2.1 ? 0.1 times daily and averaged 49.4 ? 4.7 min per incubation bout. Of the 111 male-initiated changeovers, 17 (15.3%) involved food transfers to the female on or near the nest. Eagle behavior away from the nest was not monitored systematically during incubation; females occasionally were observed foraging on their own, however, when males did not provide them with food. The unsuccessful eagle pair abandoned their nesting effort during the third week of incubation in 1978. The male incubated only once during my 23.4 h of daylight observations and did not deliver any food to his mate. The lower incubation time of the female (67.5% of daylight hours) and the greater exposure time of the eggs (31.6%) suggest that inattentiveness by the male may have forced the female off the nest to forage and ultimately to abandon her effort altogether. No direct evidence exists that the male who successfully bred at this site in 1977 died or was supplanted, but the lack of synchrony between the pair in 1978 suggests that a different male was present. Brooding/shading nestlings.-A total of 1,248 daylight hours (86 observation days) of data was collected during chick rearing at eight nests in 1978-1979. Chick rearing was defined as the period between the hatching of the first egg and the fledging of the last offspring. Although males regularly landed on nests to deliver prey, they were present only 0.6 ? 0.2% of the observation time. I observed a male brooding and feeding nestlings only once during the study. Clearly, the parental role of males during brood rearing was to provide food, because essentially no time was invested in brooding or feeding young. Several other workers who closely monitored parental behavior at the nest also reported that male eagles rarely brooded or fed young (Hunsicker 1972, Hoechlin 1974, Ellis 1979). This content downloaded from 157.55.39.247 on Sun, 27 Mar 2016 07:03:43 UTC All use subject to http://about.jstor.org/terms October 1984] Care and Feeding of Golden Eagles 755

read more

Citations
More filters
Journal ArticleDOI

Sources of variation in mortality of the Bearded Vulture Gypaetus barbatus in Europe

TL;DR: The results suggest that human persecution continues to be the main factor contributing to unnatural mortality for European Bearded Vultures, with substantial differences between causes of mortality recorded for birds located by chance and radio-tagged birds.
Journal ArticleDOI

Proximate and ultimate roles of food amount in regulating egret sibling aggression

TL;DR: It is concluded that food amount has little direct influence on fighting behavior in these birds, though it consistently influences chick survival, and the proximate effects of this ecological variable must be divorced from its ultimate role.
Journal ArticleDOI

Offspring quality and the evolution of cainism

TL;DR: Aproximate mechanism is proposed linking population saturation with the incidence of cainism, based on demonstrable population characteristics found in several long-lived species.
Journal ArticleDOI

The effects of parent and offspring gender on food allocation in budgerigars

TL;DR: Male parents may provide extra care to broods biased toward the offspring sex which most benefits from this extra care, and female-biased broods obtained nearly three times more regurgitations in the final pre-fledge period than male- biased broods.
Journal ArticleDOI

Evolution of Growth Rates in Eagles: Sibling Competition Vs. Energy Considerations

Gary R. Bortolotti
- 01 Feb 1986 - 
TL;DR: A model of the effect of hatching interval, species—specific growth rate, and relative growth of siblings, on the probability of fratricide suggests that sibling competition is not an important factor in selecting for rapid growth.
References
More filters
Book ChapterDOI

Parental investment and sexual selection

TL;DR: The p,cnetics of sex nas now becn clarif ied, and Fishcr ( 1958 ) hrs produccd , n,od"l to cxplarn sex ratios at coDception, a nrodel recently extendcd to include special mccha_ nisms that operate under inbreeding (Hunrilron I96?).
Journal ArticleDOI

Communities and Ecosystems

Journal ArticleDOI

Sexual Dimorphism and Differential Niche Utilization in Birds

TL;DR: Evidence of an adaptive function of sexual dimorphism in size in woodpeckers is presented by relating degrees of morphologicalDimorphism and sexual divergence in foraging behavior in two melanerpine species, the stronglyDimorphic Hispaniolan Woodpecker of Haiti and the Dominican Republic and the moderately dimorphic Golden-fronted Woodpeker of continental North and Central America.