scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Partial least squares regression and projection on latent structure regression (PLS Regression)

01 Jan 2010-Wiley Interdisciplinary Reviews: Computational Statistics (John Wiley & Sons, Ltd)-Vol. 2, Iss: 1, pp 97-106
TL;DR: Partial least squares (PLS) regression as mentioned in this paper is a recent technique that combines features from and generalizes principal component analysis (PCA) and multiple linear regression, which can be used to predict a set of dependent variables from a subset of independent variables or predictors.
Abstract: Partial least squares (PLS) regression (a.k.a. projection on latent structures) is a recent technique that combines features from and generalizes principal component analysis (PCA) and multiple linear regression. Its goal is to predict a set of dependent variables from a set of independent variables or predictors. This prediction is achieved by extracting from the predictors a set of orthogonal factors called latent variables which have the best predictive power. These latent variables can be used to create displays akin to PCA displays. The quality of the prediction obtained from a PLS regression model is evaluated with cross-validation techniques such as the bootstrap and jackknife. There are two main variants of PLS regression: The most common one separates the roles of dependent and independent variables; the second one—used mostly to analyze brain imaging data—gives the same roles to dependent and independent variables. Copyright © 2010 John Wiley & Sons, Inc. For further resources related to this article, please visit the WIREs website.
Citations
More filters
Journal ArticleDOI
TL;DR: Principal component analysis (PCA) as discussed by the authors is a multivariate technique that analyzes a data table in which observations are described by several inter-correlated quantitative dependent variables, and its goal is to extract the important information from the table, to represent it as a set of new orthogonal variables called principal components, and display the pattern of similarity of the observations and of the variables as points in maps.
Abstract: Principal component analysis PCA is a multivariate technique that analyzes a data table in which observations are described by several inter-correlated quantitative dependent variables. Its goal is to extract the important information from the table, to represent it as a set of new orthogonal variables called principal components, and to display the pattern of similarity of the observations and of the variables as points in maps. The quality of the PCA model can be evaluated using cross-validation techniques such as the bootstrap and the jackknife. PCA can be generalized as correspondence analysis CA in order to handle qualitative variables and as multiple factor analysis MFA in order to handle heterogeneous sets of variables. Mathematically, PCA depends upon the eigen-decomposition of positive semi-definite matrices and upon the singular value decomposition SVD of rectangular matrices. Copyright © 2010 John Wiley & Sons, Inc.

6,398 citations

Journal ArticleDOI
01 Jan 2021
TL;DR: Transfer learning aims to improve the performance of target learners on target domains by transferring the knowledge contained in different but related source domains as discussed by the authors, in which the dependence on a large number of target-domain data can be reduced for constructing target learners.
Abstract: Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target-domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. Due to the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning research studies, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Unlike previous surveys, this survey article reviews more than 40 representative transfer learning approaches, especially homogeneous transfer learning approaches, from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, over 20 representative transfer learning models are used for experiments. The models are performed on three different data sets, that is, Amazon Reviews, Reuters-21578, and Office-31, and the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

2,433 citations

Journal ArticleDOI
TL;DR: For both PLS methods, statistical inferences are implemented using cross-validation techniques to identify significant patterns of voxel activation and are presented with small numerical examples and typical applications in neuroimaging.

1,037 citations


Cites background or methods from "Partial least squares regression an..."

  • ...…behavior and brain activity), while PLSR (Wold, 1982; Martens and Naes, 1989; de Jong and Phatak, 1997; Tenenhaus, 1998; Martens andMartens, 2001; Wold et al., 2001; Abdi, 2010) is a regression technique that predicts one set of data from another (e.g., predicts behavior from brain activity)....

    [...]

  • ...For this step, standard errors and confidence intervals of the corresponding PLSR parameters are derived directly from the data through resampling techniques such as the bootstrap (Abdi, 2010; Abdi et al., 2009a)....

    [...]

  • ..., behavior and brain activity), while PLSR (Wold, 1982; Martens and Naes, 1989; de Jong and Phatak, 1997; Tenenhaus, 1998; Martens andMartens, 2001; Wold et al., 2001; Abdi, 2010) is a regression technique that predicts one set of data from another (e....

    [...]

  • ...Each run of the SVD produces orthogonal latent variables for X and Y and corresponding regression weights (see, e.g., Abdi, 2010, for more details and alternative algorithms)....

    [...]

  • ...…Y is maximal and such that t1 is uncorrelated with t2 which has maximal covariance with Y and so on for all L latent variables (see, e.g., de Jong, 1993; Burnham et al., 1996; Tenenhaus, 1998; Tenenhaus and Tenenhaus, in press; Abdi, 2010; Esposito-Vinzi et al., 2010, for proofs and developments)....

    [...]

12 Mar 2013
TL;DR: The concepts and ideas cited in this paper mainly refer to the Quality of Experience of multimedia communication systems, but may be helpful also for other areas where QoE is an issue, and the document will not reflect the opinion of each individual person at all points.
Abstract: This White Paper is a contribution of the European Network on Quality of Experience in Multimedia Systems and Services, Qualinet (COST Action IC 1003, see www.qualinet.eu), to the scientific discussion about the term "Quality of Experience" (QoE) and its underlying concepts. It resulted from the need to agree on a working definition for this term which facilitates the communication of ideas within a multidisciplinary group, where a joint interest around multimedia communication systems exists, however approached from different perspectives. Thus, the concepts and ideas cited in this paper mainly refer to the Quality of Experience of multimedia communication systems, but may be helpful also for other areas where QoE is an issue. The Network of Excellence (NoE) Qualinet aims at extending the notion of network-centric Quality of Service (QoS) in multimedia systems, by relying on the concept of Quality of Experience (QoE). The main scientific objective is the development of methodologies for subjective and objective quality metrics taking into account current and new trends in multimedia communication systems as witnessed by the appearance of new types of content and interactions. A substantial scientific impact on fragmented efforts carried out in this field will be achieved by coordinating the research of European experts under the catalytic COST umbrella. The White Paper has been compiled on the basis of a first open call for ideas which was launched for the February 2012 Qualinet Meeting held in Prague, Czech Republic. The ideas were presented as short statements during that meeting, reflecting the ideas of the persons listed under the headline "Contributors" in the previous section. During the Prague meeting, the ideas have been further discussed and consolidated in the form of a general structure of the present document. An open call for authors was issued at that meeting, to which the persons listed as "Authors" in the previous section have announced their willingness to contribute in the preparation of individual sections. For each section, a coordinating author has been assigned which coordinated the writing of that section, and which is underlined in the author list preceding each section. The individual sections were then integrated and aligned by an editing group (listed as "Editors" in the previous section), and the entire document was iterated with the entire group of authors. Furthermore, the draft text was discussed with the participants of the Dagstuhl Seminar 12181 "Quality of Experience: From User Perception to Instrumental Metrics" which was held in Schlos Dagstuhl, Germany, May 1-4 2012, and a number of changes were proposed, resulting in the present document. As a result of the writing process and the large number of contributors, authors and editors, the document will not reflect the opinion of each individual person at all points. Still, we hope that it is found to be useful for everybody working in the field of Quality of Experience of multimedia communication systems, and most probably also beyond that field.

686 citations


Cites background from "Partial least squares regression an..."

  • ..., External Preference Mapping (Mattila, 2001) or Partial Least Square Regression (Strohmeier, 2011; Abdi, 2010)....

    [...]

  • ...30 E.g., External Preference Mapping (Mattila, 2001) or Partial Least Square Regression (Strohmeier, 2011; Abdi, 2010)....

    [...]

References
More filters
Book
01 Jan 1993
TL;DR: This article presents bootstrap methods for estimation, using simple arguments, with Minitab macros for implementing these methods, as well as some examples of how these methods could be used for estimation purposes.
Abstract: This article presents bootstrap methods for estimation, using simple arguments. Minitab macros for implementing these methods are given.

37,183 citations

Book
01 Jan 1966
TL;DR: In this article, the Straight Line Case is used to fit a straight line by least squares, and the Durbin-Watson Test is used for checking the straight line fit.
Abstract: Basic Prerequisite Knowledge. Fitting a Straight Line by Least Squares. Checking the Straight Line Fit. Fitting Straight Lines: Special Topics. Regression in Matrix Terms: Straight Line Case. The General Regression Situation. Extra Sums of Squares and Tests for Several Parameters Being Zero. Serial Correlation in the Residuals and the Durbin--Watson Test. More of Checking Fitted Models. Multiple Regression: Special Topics. Bias in Regression Estimates, and Expected Values of Mean Squares and Sums of Squares. On Worthwhile Regressions, Big F's, and R 2 . Models Containing Functions of the Predictors, Including Polynomial Models. Transformation of the Response Variable. "Dummy" Variables. Selecting the "Best" Regression Equation. Ill--Conditioning in Regression Data. Ridge Regression. Generalized Linear Models (GLIM). Mixture Ingredients as Predictor Variables. The Geometry of Least Squares. More Geometry of Least Squares. Orthogonal Polynomials and Summary Data. Multiple Regression Applied to Analysis of Variance Problems. An Introduction to Nonlinear Estimation. Robust Regression. Resampling Procedures (Bootstrapping). Bibliography. True/False Questions. Answers to Exercises. Tables. Indexes.

18,952 citations

Book
01 May 1986
TL;DR: In this article, the authors present a graphical representation of data using Principal Component Analysis (PCA) for time series and other non-independent data, as well as a generalization and adaptation of principal component analysis.
Abstract: Introduction * Properties of Population Principal Components * Properties of Sample Principal Components * Interpreting Principal Components: Examples * Graphical Representation of Data Using Principal Components * Choosing a Subset of Principal Components or Variables * Principal Component Analysis and Factor Analysis * Principal Components in Regression Analysis * Principal Components Used with Other Multivariate Techniques * Outlier Detection, Influential Observations and Robust Estimation * Rotation and Interpretation of Principal Components * Principal Component Analysis for Time Series and Other Non-Independent Data * Principal Component Analysis for Special Types of Data * Generalizations and Adaptations of Principal Component Analysis

17,446 citations

Reference EntryDOI
15 Oct 2005
TL;DR: Principal component analysis (PCA) as discussed by the authors replaces the p original variables by a smaller number, q, of derived variables, the principal components, which are linear combinations of the original variables.
Abstract: When large multivariate datasets are analyzed, it is often desirable to reduce their dimensionality. Principal component analysis is one technique for doing this. It replaces the p original variables by a smaller number, q, of derived variables, the principal components, which are linear combinations of the original variables. Often, it is possible to retain most of the variability in the original variables with q very much smaller than p. Despite its apparent simplicity, principal component analysis has a number of subtleties, and it has many uses and extensions. A number of choices associated with the technique are briefly discussed, namely, covariance or correlation, how many components, and different normalization constraints, as well as confusion with factor analysis. Various uses and extensions are outlined. Keywords: dimension reduction; factor analysis; multivariate analysis; variance maximization

14,773 citations

Journal ArticleDOI
TL;DR: In this paper, an estimation procedure based on adding small positive quantities to the diagonal of X′X was proposed, which is a method for showing in two dimensions the effects of nonorthogonality.
Abstract: In multiple regression it is shown that parameter estimates based on minimum residual sum of squares have a high probability of being unsatisfactory, if not incorrect, if the prediction vectors are not orthogonal. Proposed is an estimation procedure based on adding small positive quantities to the diagonal of X′X. Introduced is the ridge trace, a method for showing in two dimensions the effects of nonorthogonality. It is then shown how to augment X′X to obtain biased estimates with smaller mean square error.

8,091 citations