scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Particle reinforced aluminium and magnesium matrix composites

01 Jan 1994-International Materials Reviews (Taylor & Francis)-Vol. 39, Iss: 1, pp 1-23
TL;DR: In this article, the current status of particle reinforced metal matrix composites is reviewed and the different types of reinforcement being used, together with the alternative processing methods, are discussed, and different factors have to be taken into consideration to produce a high quality billet.
Abstract: Particle reinforced metal matrix composites are now being produced commerically, and in this paper the current status of these materials is reviewed. The different types of reinforcement being used, together with the alternative processing methods, are discussed. Depending on the initial processing method, different factors have to be taken into consideration to produce a high quality billet. With powder metallurgy processing, the composition of the matrix and the type of reinforcement are independent of one another. However, in molten metal processing they are intimately linked in terms of the different reactivities which occur between reinforcement and matrix in the molten state. The factors controlling the distribution of reinforcement are also dependent on the initial processing method. Secondary fabrication methods, such as extrusion and rolling, are essential in processing composites produced by powder metallurgy, since they are required to consolidate the composite fully. Other methods, suc...
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a mechanism-based theory of strain gradient plasticity is proposed based on a multiscale framework linking the microscale notion of statistically stored and geometrically necessary dislocations to the mesoscale notion of plastic strain and strain gradient.
Abstract: A mechanism-based theory of strain gradient plasticity (MSG) is proposed based on a multiscale framework linking the microscale notion of statistically stored and geometrically necessary dislocations to the mesoscale notion of plastic strain and strain gradient. This theory is motivated by our recent analysis of indentation experiments which strongly suggest a linear dependence of the square of plastic flow stress on strain gradient. While such linear dependence is predicted by the Taylor hardening model relating the flow stress to dislocation density, existing theories of strain gradient plasticity have failed to explain such behavior. We believe that a mesoscale theory of plasticity should not only be based on stress–strain behavior obtained from macroscopic mechanical tests, but should also draw information from micromechanical, gradient-dominant tests such as micro-indentation or nano-indentation. According to this viewpoint, we explore an alternative formulation of strain gradient plasticity in which the Taylor model is adopted as a founding principle. We distinguish the microscale at which dislocation interaction is considered from the mesoscale at which the plasticity theory is formulated. On the microscale, we assume that higher order stresses do not exist, that the square of flow stress increases linearly with the density of geometrically necessary dislocations, strictly following the Taylor model, and that the plastic flow retains the associative structure of conventional plasticity. On the mesoscale, the constitutive equations are constructed by averaging microscale plasticity laws over a representative cell. An expression for the effective strain gradient is obtained by considering models of geometrically necessary dislocations associated with bending, torsion and 2-D axisymmetric void growth. The new theory differs from all existing phenomenological theories in its mechanism-based guiding principles, although the mathematical structure is quite similar to the theory proposed by Fleck and Hutchinson. A detailed analysis of the new theory is presented in Part II of this paper.

1,679 citations

Journal ArticleDOI
TL;DR: In this paper, a microbend test method for determining the plasticity length scale has been developed and described, which involves the bending of a thin annealed foil around a small diameter cylindrical mandril, followed by measurement of the unloaded and loaded radii of curvature.

1,614 citations

Journal ArticleDOI
TL;DR: Aluminum matrix composites (AMCs) refer to the class of light-weight high performance aluminium centric material systems as mentioned in this paper, which can be tailored to the demands of different industrial applications by suitable combinations of matrix, reinforcement and processing route.
Abstract: Aluminium matrix composites (AMCs) refer to the class of light weight high performance aluminium centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibres, whisker or particulates, in volume fractions ranging from a few percent to 70%. Properties of AMCs can be tailored to the demands of different industrial applications by suitable combinations of matrix, reinforcement and processing route. Presently several grades of AMCs are manufactured by different routes. Three decades of intensive research have provided a wealth of new scientific knowledge on the intrinsic and extrinsic effects of ceramic reinforcement vis-a-vis physical, mechanical, thermo-mechanical and tribological properties of AMCs. In the last few years, AMCs have been utilised in high-tech structural and functional applications including aerospace, defence, automotive, and thermal management areas, as well as in sports and recreation. It is interesting to note that research on particle-reinforced cast AMCs took root in India during the 70’s, attained industrial maturity in the developed world nd is currently in the process of joining the mainstream of materials. This paper presents an overview of AMC material ystems on aspects relating to processing, icrostructure, roperties and applications.

1,009 citations


Cites background from "Particle reinforced aluminium and m..."

  • ...Lloyd (1999) reports that vortex-mixing technique for the preparation of ceramic particle dispersed aluminium matrix composites was originally developed by Surappa & Rohatgi (1981) at the Indian Institute of Science....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a range of uniquely multi-scale hierarchical structures have been successfully designed and fabricated by tailoring reinforcement distribution for discontinuous metal matrix composites in order to obtain superior performance.

537 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a critical analysis of the extensive experimental data on the relative viscosity of suspensions of uniform spherical particles was made, and the coefficients of different power series relating relative visco-solutions and volume fraction solids were determined using a nonlinear least squares procedure.

1,020 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model based on prismatic punching was developed to account for the relative dislocation density due to the differential thermal contraction, and an in situ transmission electron microscopy investigation was undertaken of dislocation generation at the inclusions due to thermal contraction.

970 citations

Journal ArticleDOI
TL;DR: In this article, a modified shear lag theory was used to rationalize why the proportional limit of the composite is similar to that of the matrix and why the strength of the SiCw/6061Al is anisotropic.

906 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the conditions for cavity formation from equiaxed inclusions in ductile fracture and found that critical local elastic energy conditions are necessary but not sufficient for cavities formation.
Abstract: The previously proposed conditions for cavity formation from equiaxed inclusions in ductile fracture have been examined. Critical local elastic energy conditions are found to be necessary but not sufficient for cavity formation. The interfacial strength must also be reached on part of the boundary. For inclusions larger than about 100A the energy condition is always satisfied when the interfacial strength is reached and cavities form by a critical interfacial stress condition. For smaller cavities the stored elastic energy is insufficient to open up interfacial cavities spontaneously. Approximate continuum analyses for extreme idealizations of matrix behavior furnish relatively close limits for the interfacial stress concentration for strain hardening matrices flowing around rigid non-yielding equiaxed inclusions. Such analyses give that in pure shear loading the maximum interfacial stress is very nearly equal to the equivalent flow stress in tension for the given state of plastic strain. Previously proposed models based on a local dissipation of deformation incompatibilities by the punching of dislocation loops lead to rather similar results for interfacial stress concentration when local plastic relaxation is allowed inside the loops. At very small volume fractions of second phase the inclusions do not interact for very substantial amounts of plastic strain. In this regime the interfacial stress is independent of inclusion size. At larger volume fractions of second phase, inclusions begin to interact after moderate amounts of plastic strain, and the interfacial stress concentration becomes dependent on second phase volume fraction. Some of the many reported instances of inclusion size effect in cavity formation can thus be satisfactorily explained by variations of volume fraction of second phase from point to point.

757 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the nucleation of recrystallization at large second phase particles in deformed aluminium alloy single crystals and found that particle stimulated nucleation occurs above a critical particle size which increases with decreasing strain.

679 citations