scispace - formally typeset
Search or ask a question
Posted Content

Patch-Based Image Restoration using Expectation Propagation.

TL;DR: In this article, patch-based prior distributions are used to approximate the posterior distributions using products of multivariate Gaussian densities, imposing structural constraints on the covariance matrices of these densities allows for greater scalability and distributed computation.
Abstract: This paper presents a new Expectation Propagation (EP) framework for image restoration using patch-based prior distributions. While Monte Carlo techniques are classically used to sample from intractable posterior distributions, they can suffer from scalability issues in high-dimensional inference problems such as image restoration. To address this issue, EP is used here to approximate the posterior distributions using products of multivariate Gaussian densities. Moreover, imposing structural constraints on the covariance matrices of these densities allows for greater scalability and distributed computation. While the method is naturally suited to handle additive Gaussian observation noise, it can also be extended to non-Gaussian noise. Experiments conducted for denoising, inpainting and deconvolution problems with Gaussian and Poisson noise illustrate the potential benefits of such flexible approximate Bayesian method for uncertainty quantification in imaging problems, at a reduced computational cost compared to sampling techniques.
References
More filters
Book
Christopher M. Bishop1
17 Aug 2006
TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

22,840 citations

Book
01 Jan 1995
TL;DR: Detailed notes on Bayesian Computation Basics of Markov Chain Simulation, Regression Models, and Asymptotic Theorems are provided.
Abstract: FUNDAMENTALS OF BAYESIAN INFERENCE Probability and Inference Single-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian Approaches Hierarchical Models FUNDAMENTALS OF BAYESIAN DATA ANALYSIS Model Checking Evaluating, Comparing, and Expanding Models Modeling Accounting for Data Collection Decision Analysis ADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional Approximations REGRESSION MODELS Introduction to Regression Models Hierarchical Linear Models Generalized Linear Models Models for Robust Inference Models for Missing Data NONLINEAR AND NONPARAMETRIC MODELS Parametric Nonlinear Models Basic Function Models Gaussian Process Models Finite Mixture Models Dirichlet Process Models APPENDICES A: Standard Probability Distributions B: Outline of Proofs of Asymptotic Theorems C: Computation in R and Stan Bibliographic Notes and Exercises appear at the end of each chapter.

16,079 citations

Journal ArticleDOI
TL;DR: An algorithm based on an enhanced sparse representation in transform domain based on a specially developed collaborative Wiener filtering achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.
Abstract: We propose a novel image denoising strategy based on an enhanced sparse representation in transform domain. The enhancement of the sparsity is achieved by grouping similar 2D image fragments (e.g., blocks) into 3D data arrays which we call "groups." Collaborative Altering is a special procedure developed to deal with these 3D groups. We realize it using the three successive steps: 3D transformation of a group, shrinkage of the transform spectrum, and inverse 3D transformation. The result is a 3D estimate that consists of the jointly filtered grouped image blocks. By attenuating the noise, the collaborative filtering reveals even the finest details shared by grouped blocks and, at the same time, it preserves the essential unique features of each individual block. The filtered blocks are then returned to their original positions. Because these blocks are overlapping, for each pixel, we obtain many different estimates which need to be combined. Aggregation is a particular averaging procedure which is exploited to take advantage of this redundancy. A significant improvement is obtained by a specially developed collaborative Wiener filtering. An algorithm based on this novel denoising strategy and its efficient implementation are presented in full detail; an extension to color-image denoising is also developed. The experimental results demonstrate that this computationally scalable algorithm achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.

7,912 citations

Journal ArticleDOI
TL;DR: An iterative algorithm is given for solving a system Ax=k of n linear equations in n unknowns and it is shown that this method is a special case of a very general method which also includes Gaussian elimination.
Abstract: An iterative algorithm is given for solving a system Ax=k of n linear equations in n unknowns. The solution is given in n steps. It is shown that this method is a special case of a very general method which also includes Gaussian elimination. These general algorithms are essentially algorithms for finding an n dimensional ellipsoid. Connections are made with the theory of orthogonal polynomials and continued fractions.

7,598 citations

Proceedings ArticleDOI
07 Jul 2001
TL;DR: In this paper, the authors present a database containing ground truth segmentations produced by humans for images of a wide variety of natural scenes, and define an error measure which quantifies the consistency between segmentations of differing granularities.
Abstract: This paper presents a database containing 'ground truth' segmentations produced by humans for images of a wide variety of natural scenes. We define an error measure which quantifies the consistency between segmentations of differing granularities and find that different human segmentations of the same image are highly consistent. Use of this dataset is demonstrated in two applications: (1) evaluating the performance of segmentation algorithms and (2) measuring probability distributions associated with Gestalt grouping factors as well as statistics of image region properties.

6,505 citations