scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Patient-reported safety and tolerability of the COVID-19 vaccines in persons with rare neuroimmunological diseases.

02 Aug 2021-Multiple sclerosis and related disorders (Elsevier)-Vol. 55, pp 103189-103189
TL;DR: In this article, the authors report real-world safety data of COVID-19 vaccines in persons with rare neuroimmunological diseases such as neuromyelitis optica spectrum disorder (NMOSD), MOG-antibody disease (MOGAD), and transverse myelitis.
Abstract: Background The COVID-19 vaccines are currently recommended for people with rare neuroimmunological diseases such as neuromyelitis optica spectrum disorder (NMOSD), MOG-antibody disease (MOGAD), and transverse myelitis. However, the safety profile of the vaccines in this population is uncertain. Objective To report real-world safety data of the COVID-19 vaccines in persons with rare neuroimmunological diseases. Methods An anonymous survey was distributed to patients recruited on social media. Participants answered general demographic and disease-related questions, and specific questions about their experiences with the COVID-19 vaccines. Results 438 participants completed the questionnaire. The median age was 51 (range 18–82 years); 366 were female (83.6%); 102 (23.3%) had associated comorbidities, and 354 (80.1%) were treated with immunotherapies. 242 participants (55.3%) reported a diagnosis of NMOSD; 99 (22.6%) had MOGAD; 79 (18%) had transverse myelitis. 239 participants (66.2%) were younger than 55 years of age. 138 participants (31.5%) reported earlyadverse events. Of these, 93 (67.4%) were 55 years old (p=0.0086). The most common adverse events were local reactions, including pain, redness, and swelling at the injection site, reported by 155 participants (35.4%). 73 participants (16.7%) reported new or worsening neurological symptoms following the vaccination. Most symptoms occurred within the first week after vaccination and resolved within three days. Conclusions This survey indicates an overall favorable safety and tolerability profile of the COVID-19 vaccines among persons with rare neuroimmunological diseases. Longer-term studies are warranted to confirm these data.
Citations
More filters
Journal ArticleDOI
TL;DR: The detection of MOG-IgG in the serum (and sometimes CSF) confirms the diagnosis in patients with compatible clinical-MRI phenotypes, but false positive results are occasionally encountered, especially with indiscriminate testing of large unselected populations.
Abstract: Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is the most recently defined inflammatory demyelinating disease of the central nervous system (CNS). Over the last decade, several studies have helped delineate the characteristic clinical-MRI phenotypes of the disease, allowing distinction from aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG+NMOSD) and multiple sclerosis (MS). The clinical manifestations of MOGAD are heterogeneous, ranging from isolated optic neuritis or myelitis to multifocal CNS demyelination often in the form of acute disseminated encephalomyelitis (ADEM), or cortical encephalitis. A relapsing course is observed in approximately 50% of patients. Characteristic MRI features have been described that increase the diagnostic suspicion (e.g., perineural optic nerve enhancement, spinal cord H-sign, T2-lesion resolution over time) and help discriminate from MS and AQP4+NMOSD, despite some overlap. The detection of MOG-IgG in the serum (and sometimes CSF) confirms the diagnosis in patients with compatible clinical-MRI phenotypes, but false positive results are occasionally encountered, especially with indiscriminate testing of large unselected populations. The type of cell-based assay used to evaluate for MOG-IgG (fixed vs. live) and antibody end-titer (low vs. high) can influence the likelihood of MOGAD diagnosis. International consensus diagnostic criteria for MOGAD are currently being compiled and will assist in clinical diagnosis and be useful for enrolment in clinical trials. Although randomized controlled trials are lacking, MOGAD acute attacks appear to be very responsive to high dose steroids and plasma exchange may be considered in refractory cases. Attack-prevention treatments also lack class-I data and empiric maintenance treatment is generally reserved for relapsing cases or patients with severe residual disability after the presenting attack. A variety of empiric steroid-sparing immunosuppressants can be considered and may be efficacious based on retrospective or prospective observational studies but prospective randomized placebo-controlled trials are needed to better guide treatment. In summary, this article will review our rapidly evolving understanding of MOGAD diagnosis and management.

44 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report two cases of newly diagnosed neuromyelitis optica spectrum disorder (NMOSD) following COVID-19 vaccination and systematically review previous reports.
Abstract: Introduction The pathogenesis of neuromyelitis optica spectrum disorder (NMOSD) has been vigorously illustrated, but triggers of the disease remain unclear. Viral infection and vaccination have been observed to precede certain cases of NMOSD. Amidst the Coronavirus disease 2019 (COVID-19) pandemic, mass vaccination takes place across the globe. We report two cases of newly diagnosed NMOSD following COVID-19 vaccination and systematically review previous reports. Method Searching of Ovid MEDLINE and EMBASE databases was done using predefined search terms related to NMOSD and vaccination. Duplicates were removed. Newly diagnosed NMOSD cases fulfilling the 2015 International Panel for NMO Diagnosis criteria with symptoms presenting between 2-30 days after vaccination were included. Data on age, sex, comorbidity, vaccine name, type, and dose number, duration from vaccination to symptom onset, clinical phenotype(s), MRI findings, CSF profiles, severity of attack, initial and maintenance treatment, number of relapses after vaccination, and clinical outcomes were extracted using a standardized table and compared. Result Ten cases of postvaccination NMOSD were identified. Patients aged between 15-46 years old. Nine patients (90%) presented with transverse myelitis and 3 (30%) with optic neuritis. The mean duration from vaccination to clinical onset was 8.2 days (median 9 days). Five patients (50%) tested positive for aquaporin 4 (AQP4) antibody. One patient had a family history of NMOSD. Three-fourths of AQP4-IgG seropositive patients with myelopathy had short transverse myelitis. The reported vaccines included CoronaVac, ChAdOx1 nCoV-19, yellow fever, quadrivalent influenza, H1N1 influenza, quadrivalent human papillomavirus, Japanese encephalitis, rabies, and recombinant hepatitis B virus together with tetanus-diphtheria-pertussis vaccines. All patients received high-dose steroids for initial treatment and 2 received additional therapeutic plasma exchange. Maintenance therapy was given in 4 patients. Five patients (50%) experienced no subsequent relapses within the follow-up period ranging between 3-34 months. Almost all patients returned to baseline functional status. Discussion The temporal relationship between vaccination and onset of symptoms suggests that vaccine might be a trigger of NMOSD. Genetic predisposition could be a risk factor for postvaccination NMOSD as there are evidences of family history and presence of an associated HLA allele. The prevalence of short-segment transverse myelitis seems to be higher than in typical cases of NMOSD, but the natural history is otherwise similar. All patients received acute treatment with high-dose corticosteroids, most with excellent response. Long-term immunomodulation therapy should be initiated for relapse prevention. Limitations of this study are lack of some relevant data, precision of temporal relationship, and the small number of reports. Conclusion : Postvaccination NMOSD is a rare condition that can occur with various types of vaccines. The short temporal relationship between vaccination and onset of NMOSD and the history of NMOSD in one patient's sibling indicate that vaccine might be a trigger for genetically predisposed individuals.

27 citations

Journal ArticleDOI
TL;DR: In this paper , the authors report two cases of newly diagnosed neuromyelitis optica spectrum disorder (NMOSD) following COVID-19 vaccination and systematically review previous reports.
Abstract: The pathogenesis of neuromyelitis optica spectrum disorder (NMOSD) has been vigorously illustrated, but triggers of the disease remain unclear. Viral infection and vaccination have been observed to precede certain cases of NMOSD. Amidst the Coronavirus disease 2019 (COVID-19) pandemic, mass vaccination takes place across the globe. We report two cases of newly diagnosed NMOSD following COVID-19 vaccination and systematically review previous reports.Searching of Ovid MEDLINE and EMBASE databases was done using predefined search terms related to NMOSD and vaccination. Duplicates were removed. Newly diagnosed NMOSD cases fulfilling the 2015 International Panel for NMO Diagnosis criteria with symptoms presenting between 2-30 days after vaccination were included. Data on age, sex, comorbidity, vaccine name, type, and dose number, duration from vaccination to symptom onset, clinical phenotype(s), MRI findings, CSF profiles, severity of attack, initial and maintenance treatment, number of relapses after vaccination, and clinical outcomes were extracted using a standardized table and compared.Ten cases of postvaccination NMOSD were identified. Patients aged between 15-46 years old. Nine patients (90%) presented with transverse myelitis and 3 (30%) with optic neuritis. The mean duration from vaccination to clinical onset was 8.2 days (median 9 days). Five patients (50%) tested positive for aquaporin 4 (AQP4) antibody. One patient had a family history of NMOSD. Three-fourths of AQP4-IgG seropositive patients with myelopathy had short transverse myelitis. The reported vaccines included CoronaVac, ChAdOx1 nCoV-19, yellow fever, quadrivalent influenza, H1N1 influenza, quadrivalent human papillomavirus, Japanese encephalitis, rabies, and recombinant hepatitis B virus together with tetanus-diphtheria-pertussis vaccines. All patients received high-dose steroids for initial treatment and 2 received additional therapeutic plasma exchange. Maintenance therapy was given in 4 patients. Five patients (50%) experienced no subsequent relapses within the follow-up period ranging between 3-34 months. Almost all patients returned to baseline functional status.The temporal relationship between vaccination and onset of symptoms suggests that vaccine might be a trigger of NMOSD. Genetic predisposition could be a risk factor for postvaccination NMOSD as there are evidences of family history and presence of an associated HLA allele. The prevalence of short-segment transverse myelitis seems to be higher than in typical cases of NMOSD, but the natural history is otherwise similar. All patients received acute treatment with high-dose corticosteroids, most with excellent response. Long-term immunomodulation therapy should be initiated for relapse prevention. Limitations of this study are lack of some relevant data, precision of temporal relationship, and the small number of reports.Postvaccination NMOSD is a rare condition that can occur with various types of vaccines. The short temporal relationship between vaccination and onset of NMOSD and the history of NMOSD in one patient's sibling indicate that vaccine might be a trigger for genetically predisposed individuals.

27 citations

Journal ArticleDOI
TL;DR: In this article , the authors report on nine patients (eight cases of MS and one case of NMOSD) who presented a disease relapse in close temporal association with their first AZD1222 vaccination dose against COVID-19.
Abstract: We report on nine patients (eight cases of MS and one case of NMOSD) who presented a disease relapse in close temporal association with their first AZD1222 vaccination dose against COVID-19. These patients had been stable for a median period of six years, with no evidence of disease activity and no change in their medication. After a median of 13 days (7 to 25 days) from vaccination, they developed a new relapse with increased disability and new lesions on magnetic resonance imaging. Although this association may be rare, it might be an adverse event of AZD1222.

24 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on nine patients (eight cases of MS and one case of NMOSD) who presented a disease relapse in close temporal association with their first AZD1222 vaccination dose against COVID-19.
Abstract: We report on nine patients (eight cases of MS and one case of NMOSD) who presented a disease relapse in close temporal association with their first AZD1222 vaccination dose against COVID-19. These patients had been stable for a median period of six years, with no evidence of disease activity and no change in their medication. After a median of 13 days (7 to 25 days) from vaccination, they developed a new relapse with increased disability and new lesions on magnetic resonance imaging. Although this association may be rare, it might be an adverse event of AZD1222.

24 citations

References
More filters
Journal ArticleDOI
TL;DR: Research electronic data capture (REDCap) is a novel workflow methodology and software solution designed for rapid development and deployment of electronic data Capture tools to support clinical and translational research.

29,988 citations

Journal ArticleDOI
TL;DR: A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older and safety over a median of 2 months was similar to that of other viral vaccines.
Abstract: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a world...

10,274 citations

Journal ArticleDOI
TL;DR: The Research Electronic Data Capture (REDCap) data management platform was developed in 2004 to address an institutional need at Vanderbilt University, then shared with a limited number of adopting sites beginning in 2006, and a broader consortium sharing and support model was created.

8,712 citations

DOI
19 Mar 2020
TL;DR: The Director-General of the World Health Organization, Dr. Tedros Adhanom Ghebreyesus, noted that over the past 2 weeks, the number of cases outside China increased 13-fold and theNumber of countries with cases increased threefold, and further increases are expected.
Abstract: The World Health Organization (WHO) on March 11, 2020, has declared the novel coronavirus (COVID-19) outbreak a global pandemic (1). At a news briefing , WHO Director-General, Dr. Tedros Adhanom Ghebreyesus, noted that over the past 2 weeks, the number of cases outside China increased 13-fold and the number of countries with cases increased threefold. Further increases are expected. He said that the WHO is "deeply concerned both by the alarming levels of spread and severity and by the alarming levels of inaction," and he called on countries to take action now to contain the virus. "We should double down," he said. "We should be more aggressive." [...].

4,415 citations

Journal ArticleDOI
25 Aug 2020-JAMA
TL;DR: This review discusses current evidence regarding the pathophysiology, transmission, diagnosis, and management of COVID-19, the novel severe acute respiratory syndrome coronavirus 2 pandemic that has caused a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease.
Abstract: Importance The coronavirus disease 2019 (COVID-19) pandemic, due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease. This review discusses current evidence regarding the pathophysiology, transmission, diagnosis, and management of COVID-19. Observations SARS-CoV-2 is spread primarily via respiratory droplets during close face-to-face contact. Infection can be spread by asymptomatic, presymptomatic, and symptomatic carriers. The average time from exposure to symptom onset is 5 days, and 97.5% of people who develop symptoms do so within 11.5 days. The most common symptoms are fever, dry cough, and shortness of breath. Radiographic and laboratory abnormalities, such as lymphopenia and elevated lactate dehydrogenase, are common, but nonspecific. Diagnosis is made by detection of SARS-CoV-2 via reverse transcription polymerase chain reaction testing, although false-negative test results may occur in up to 20% to 67% of patients; however, this is dependent on the quality and timing of testing. Manifestations of COVID-19 include asymptomatic carriers and fulminant disease characterized by sepsis and acute respiratory failure. Approximately 5% of patients with COVID-19, and 20% of those hospitalized, experience severe symptoms necessitating intensive care. More than 75% of patients hospitalized with COVID-19 require supplemental oxygen. Treatment for individuals with COVID-19 includes best practices for supportive management of acute hypoxic respiratory failure. Emerging data indicate that dexamethasone therapy reduces 28-day mortality in patients requiring supplemental oxygen compared with usual care (21.6% vs 24.6%; age-adjusted rate ratio, 0.83 [95% CI, 0.74-0.92]) and that remdesivir improves time to recovery (hospital discharge or no supplemental oxygen requirement) from 15 to 11 days. In a randomized trial of 103 patients with COVID-19, convalescent plasma did not shorten time to recovery. Ongoing trials are testing antiviral therapies, immune modulators, and anticoagulants. The case-fatality rate for COVID-19 varies markedly by age, ranging from 0.3 deaths per 1000 cases among patients aged 5 to 17 years to 304.9 deaths per 1000 cases among patients aged 85 years or older in the US. Among patients hospitalized in the intensive care unit, the case fatality is up to 40%. At least 120 SARS-CoV-2 vaccines are under development. Until an effective vaccine is available, the primary methods to reduce spread are face masks, social distancing, and contact tracing. Monoclonal antibodies and hyperimmune globulin may provide additional preventive strategies. Conclusions and Relevance As of July 1, 2020, more than 10 million people worldwide had been infected with SARS-CoV-2. Many aspects of transmission, infection, and treatment remain unclear. Advances in prevention and effective management of COVID-19 will require basic and clinical investigation and public health and clinical interventions.

3,371 citations