scispace - formally typeset

Journal ArticleDOI

PCSD1, a new patient-derived model of bone metastatic prostate cancer, is castrate-resistant in the bone-niche

03 Oct 2014-Journal of Translational Medicine (BioMed Central)-Vol. 12, Iss: 1, pp 275-275

TL;DR: PCSD1 is a new primary prostate cancer bone metastasis-derived xenograft model to study bone metastatic disease and for pre-clinical drug development of novel therapies for inhibiting therapy resistant prostate cancer growth in the bone-niche.

AbstractProstate cancer bone metastasis occurs in 50-90% of men with advanced disease for which there is no cure. Bone metastasis leads to debilitating fractures and severe bone pain. It is associated with therapy resistance and rapid decline. Androgen deprivation therapy (ADT) is standard of care for advanced prostate cancer, however, bone metastatic prostate cancer (PCa) often becomes resistant to ADT. There are few pre-clinical models to understand the interaction between the bone microenvironment and prostate cancer. Here we report the castrate resistant growth in the bone niche of PCSD1, a patient-derived intra-femoral xenograft model of prostate bone metastatic cancer treated with the anti-androgen, bicalutamide. PCSD1 bone-niche model was derived from a human prostate cancer femoral metastasis resected during hemiarthroplasty and serially transplanted into Rag2 −/− ;γ c −/− mice intra-femorally (IF) or sub-cutaneously (SC). At 5 weeks post-transplantation mice received bicalutamide or vehicle control for 18 days. Tumor growth of PCSD1 was measured with calipers. PSA expression in PCSD1 xenograft tumors was determined using quantitative RT-PCR and immunohistochemistry. Expression of AR and PSMA, were also determined with qPCR. PCSD1 xenograft tumor growth capacity was 24 fold greater in the bone (intra-femoral, IF) than in the soft tissue (sub-cutaneous, SC) microenvironment. Treatment with the anti-androgen, bicalutamide, inhibited tumor growth in the sub-cutaneous transplantation site. However, bicalutamide was ineffective in suppressing PCSD1 tumor growth in the bone-niche. Nevertheless, bicalutamide treatment of intra-femoral tumors significantly reduced PSA expression (p < =0.008) and increased AR (p < =0.032) relative to control. PCSD1 tumors were castrate resistant when growing in the bone-niche compared to soft tissue. Bicalutamide had little effect on reducing tumor burden in the bone yet still decreased tumor PSA expression and increased AR expression, thus, this model closely recapitulated castrate-resistant, human prostate cancer bone metastatic disease. PCSD1 is a new primary prostate cancer bone metastasis-derived xenograft model to study bone metastatic disease and for pre-clinical drug development of novel therapies for inhibiting therapy resistant prostate cancer growth in the bone-niche.

Topics: Bone metastasis (68%), PCA3 (62%), Prostate cancer (62%), Bicalutamide (61%), Metastasis (60%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
TL;DR: The role of different bone cell types in supporting disseminated tumour cell dormancy and reactivation is discussed, and the new opportunities this provides for targeting the bone microenvironment to control dormancies and bone metastasis are highlighted.
Abstract: During the past decade preclinical studies have defined many of the mechanisms used by tumours to hijack the skeleton and promote bone metastasis. This has led to the development and widespread clinical use of bone-targeted drugs to prevent skeletal-related events. This understanding has also identified a critical dependency between colonizing tumour cells and the cells of bone. This is particularly important when tumour cells first arrive in bone, adapt to their new microenvironment and enter a long-lived dormant state. In this Review, we discuss the role of different bone cell types in supporting disseminated tumour cell dormancy and reactivation, and highlight the new opportunities this provides for targeting the bone microenvironment to control dormancy and bone metastasis.

262 citations


Journal ArticleDOI
TL;DR: This work addresses how the primary tumor microenvironment influences PCa metastasis via integrins, extracellular proteases, and transient epithelia-mesenchymal transition (EMT) to promote PCa progression, invasion, and metastasis.
Abstract: Prostate cancer (PCa) is the second leading cause of cancer death in men worldwide. Most PCa deaths are due to osteoblastic bone metastases. What triggers PCa metastasis to the bone and what causes osteoblastic lesions remain unanswered. A major contributor to PCa metastasis is the host microenvironment. Here, we address how the primary tumor microenvironment influences PCa metastasis via integrins, extracellular proteases, and transient epithelia-mesenchymal transition (EMT) to promote PCa progression, invasion, and metastasis. We discuss how the bone-microenvironment influences metastasis; where chemotactic cytokines favor bone homing, adhesion molecules promote colonization, and bone-derived signals induce osteoblastic lesions. Animal models that fully recapitulate human PCa progression from primary tumor to bone metastasis are needed to understand the PCa pathophysiology that leads to bone metastasis. Better delineation of the specific processes involved in PCa bone metastasize is needed to prevent or treat metastatic PCa. Therapeutic regimens that focus on the tumor microenvironment could add to the PCa pharmacopeia.

47 citations


Cites background from "PCSD1, a new patient-derived model ..."

  • ...tumors into the bone, but not in the skin, resulted in castrationresistant tumor growth (175)....

    [...]


Journal ArticleDOI
TL;DR: The development of currently used models of prostate cancer bone metastasis are outlined and mechanistic and therapeutic advances made made using these models are discussed and future directions to improve the applicability of these models to the metastatic cascade and human disease are suggested.
Abstract: Metastatic disease is the principal cause of prostate-cancer-related mortality. Our ability to accurately recapitulate the spread of prostate cancer to bone - the most common site of metastasis - is critical to the development of novel metastasis-directed therapies. Several translational models of prostate cancer bone metastasis have been developed, including animal models, cell line injection models, 3D in vitro models, bone implant models, and patient-derived xenograft models. The use of these models has led to numerous advances in elucidating the molecular mechanisms of metastasis and innovations in targeted therapy. Despite this progress, current models are limited by a failure to holistically reproduce each individual element of the metastatic cascade in prostate cancer bone metastasis. In addition, factors such as accurate recapitulation of immunobiological events and improvements in tumour heterogeneity require further consideration. Knowledge gained from historical and currently used models will improve the development of next-generation models. An introspective appraisal of current preclinical models demonstrating bone metastases is warranted to narrow research focus, improve future translational modelling, and expedite the delivery of urgently needed metastasis-directed treatments.

46 citations


Journal ArticleDOI
TL;DR: It is suggested that WNT5A may be a key gene that induces CRPC in the bone niche by recruiting and regulating macrophages through CCL2 and BMP6, respectively.
Abstract: Although the standard treatment for the patients with recurrent and metastatic prostate cancer (CaP) is androgen deprivation therapy, castration-resistant prostate cancer (CRPC) eventually emerges Our previous report indicated that bone morphogenetic protein 6 (BMP6) induced CRPC via tumour-infiltrating macrophages In a separate line of study, we have observed that the WNT5A/BMP6 loop in CaP bone metastasis mediates resistance to androgen deprivation in tissue culture Simultaneously, we have reported that BMP6 induced castration resistance in CaP cells via tumour-infiltrating macrophages Therefore, our present study aims to investigate the mechanism of WNT5A and its interaction with macrophages on CRPC Doxycycline inducible WNT5A overexpression prostate cancer cell line was used for detailed mechanical study WNT5A was associated with increased expression of chemokine ligand 2 (CCL2) in the human CaP cell line, LNCaP Mechanistically, this induction of CCL2 by WNT5A is likely to be mediated via the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling pathway Our in vivo experiments demonstrated that the overexpression of WNT5A in LNCaP cells promoted castration resistance Conversely, this resistance was inhibited with the removal of macrophages via clodronate liposomes When patient-derived CaP LuCaP xenografts were analysed, high levels of WNT5A were correlated with increased levels of CCL2 and BMP6 In addition, higher levels of CCL2 and BMP6 were more commonly observed in intra-femoral transplanted tumours as compared to subcutaneous-transplanted tumours in the patient-derived PCSD1 bone-niche model These findings collectively suggest that WNT5A may be a key gene that induces CRPC in the bone niche by recruiting and regulating macrophages through CCL2 and BMP6, respectively

32 citations


Cites background or methods from "PCSD1, a new patient-derived model ..."

  • ...To find a clinical relevance of WNT5A in CaP, samples from different patient-derived CaP models, namely LuCaP and PCSD1 (Morrissey et al, 2010; Godebu et al, 2014), were evaluated....

    [...]

  • ...In this study, the PCSD1 boneniche xenograft model was established from CRPC patients with bone metastasis (Godebu et al, 2014)....

    [...]


Journal ArticleDOI
TL;DR: Overall, mouse modeling is an essential part of prostate cancer research and drug discovery and emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.
Abstract: Introduction: The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials.Areas covered: The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field.Expert opinion: With proper planning and following practical guidelines by the researcher...

17 citations


Cites background from "PCSD1, a new patient-derived model ..."

  • ...Prostate tumors have been difficult to establish, as they require high-quality tumor tissue and thorough characterization [117-122]....

    [...]

  • ...Even so, multiple institutions have now developed many novel PDXs, including the LuCaP models [124-127], the bone metastatic BM18 model [128], multiple models from MD Anderson [129,130], and others [119,131,132]....

    [...]


References
More filters

Journal ArticleDOI
TL;DR: The magnitude of the decline in cancer death rates from 1991 to 2010 varies substantially by age, race, and sex, ranging from no decline among white women aged 80 years and older to a 55% decline among black men aged 40 years to 49 years.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the National Cancer Institute, the Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries and mortality data were collected by the National Center for Health Statistics. A total of 1,665,540 new cancer cases and 585,720 cancer deaths are projected to occur in the United States in 2014. During the most recent 5 years for which there are data (2006-2010), delay-adjusted cancer incidence rates declined slightly in men (by 0.6% per year) and were stable in women, while cancer death rates decreased by 1.8% per year in men and by 1.4% per year in women. The combined cancer death rate (deaths per 100,000 population) has been continuously declining for 2 decades, from a peak of 215.1 in 1991 to 171.8 in 2010. This 20% decline translates to the avoidance of approximately 1,340,400 cancer deaths (952,700 among men and 387,700 among women) during this time period. The magnitude of the decline in cancer death rates from 1991 to 2010 varies substantially by age, race, and sex, ranging from no decline among white women aged 80 years and older to a 55% decline among black men aged 40 years to 49 years. Notably, black men experienced the largest drop within every 10-year age group. Further progress can be accelerated by applying existing cancer control knowledge across all segments of the population.

10,396 citations


Journal ArticleDOI
TL;DR: The inhibition of androgen biosynthesis by abiraterone acetate prolonged overall survival among patients with metastatic castration-resistant prostate cancer who previously received chemotherapy.
Abstract: BACKGROUND Biosynthesis of extragonadal androgen may contribute to the progression of castration-resistant prostate cancer. We evaluated whether abiraterone acetate, an inhibitor of androgen biosynthesis, prolongs overall survival among patients with metastatic castration-resistant prostate cancer who have received chemotherapy. METHODS We randomly assigned, in a 2:1 ratio, 1195 patients who had previously received docetaxel to receive 5 mg of prednisone twice daily with either 1000 mg of abiraterone acetate (797 patients) or placebo (398 patients). The primary end point was overall survival. The secondary end points included time to prostate-specific antigen (PSA) progression (elevation in the PSA level according to prespecified criteria), progression-free survival according to radiologic findings based on prespecified criteria, and the PSA response rate. RESULTS After a median follow-up of 12.8 months, overall survival was longer in the abiraterone acetate–prednisone group than in the placebo–prednisone group (14.8 months vs. 10.9 months; hazard ratio, 0.65; 95% confidence interval, 0.54 to 0.77; P<0.001). Data were unblinded at the interim analysis, since these results exceeded the preplanned criteria for study termination. All secondary end points, including time to PSA progression (10.2 vs. 6.6 months; P<0.001), progression-free survival (5.6 months vs. 3.6 months; P<0.001), and PSA response rate (29% vs. 6%, P<0.001), favored the treatment group. Mineralocorticoid-related adverse events, including fluid retention, hypertension, and hypokalemia, were more frequently reported in the abiraterone acetate–prednisone group than in the placebo–prednisone group. CONCLUSIONS The inhibition of androgen biosynthesis by abiraterone acetate prolonged overall survival among patients with metastatic castration-resistant prostate cancer who previously received chemotherapy. (Funded by Cougar Biotechnology; COU-AA-301 ClinicalTrials.gov number, NCT00638690.)

3,517 citations


"PCSD1, a new patient-derived model ..." refers background in this paper

  • ...Both have been shown to improve survival [8-11], however, eventually, resistance develops to these as well, perhaps through mutations in the androgen receptor [12]....

    [...]


Journal ArticleDOI
TL;DR: Enzalutamide significantly prolonged the survival of men with metastatic castration-resistant prostate cancer after chemotherapy, and was shown with respect to all secondary end points.
Abstract: Background Enzalutamide (formerly called MDV3100) targets multiple steps in the androgen-receptor–signaling pathway, the major driver of prostate-cancer growth. We aimed to evaluate whether enzalutamide prolongs survival in men with castration-resistant prostate cancer after chemotherapy. Methods In our phase 3, double-blind, placebo-controlled trial, we stratified 1199 men with castration-resistant prostate cancer after chemotherapy according to the Eastern Cooperative Oncology Group performance-status score and pain intensity. We randomly assigned them, in a 2:1 ratio, to receive oral enzalutamide at a dose of 160 mg per day (800 patients) or placebo (399 patients). The primary end point was overall survival. Results The study was stopped after a planned interim analysis at the time of 520 deaths. The median overall survival was 18.4 months (95% confidence interval [CI], 17.3 to not yet reached) in the enzalutamide group versus 13.6 months (95% CI, 11.3 to 15.8) in the placebo group (hazard ratio for de...

3,387 citations


Journal ArticleDOI
08 May 2009-Science
TL;DR: The diarylthiohydantoins RD162 and MDV3100 are characterized, two compounds optimized from a screen for nonsteroidal antiandrogens that retain activity in the setting of increased androgen receptor expression that appear to be promising candidates for treatment of advanced prostate cancer.
Abstract: Metastatic prostate cancer is treated with drugs that antagonize androgen action, but most patients progress to a more aggressive form of the disease called castration-resistant prostate cancer, driven by elevated expression of the androgen receptor. Here we characterize the diarylthiohydantoins RD162 and MDV3100, two compounds optimized from a screen for nonsteroidal antiandrogens that retain activity in the setting of increased androgen receptor expression. Both compounds bind to the androgen receptor with greater relative affinity than the clinically used antiandrogen bicalutamide, reduce the efficiency of its nuclear translocation, and impair both DNA binding to androgen response elements and recruitment of coactivators. RD162 and MDV3100 are orally available and induce tumor regression in mouse models of castration-resistant human prostate cancer. Of the first 30 patients treated with MDV3100 in a Phase I/II clinical trial, 13 of 30 (43%) showed sustained declines (by >50%) in serum concentrations of prostate-specific antigen, a biomarker of prostate cancer. These compounds thus appear to be promising candidates for treatment of advanced prostate cancer.

1,835 citations


"PCSD1, a new patient-derived model ..." refers background in this paper

  • ...Bicalutamide, one form of androgen deprivation, acts as a competitive inhibitor of androgens by binding the androgen receptor (AR), impairing DNA binding to Androgen Response Elements (ARE), and impairing recruitment of co-activators necessary for testosterone or DHT to impart their proliferative effect on responsive cells [5]....

    [...]


Journal ArticleDOI
TL;DR: Combined pharmacologic inhibition of PI3K and AR signaling caused near-complete prostate cancer regressions in a Pten-deficient murine prostate cancer model and in human prostate cancer xenografts, indicating that both pathways coordinately support survival.
Abstract: Prostate cancer is characterized by its dependence on androgen receptor (AR) and frequent activation of PI3K signaling. We find that AR transcriptional output is decreased in human and murine tumors with PTEN deletion and that PI3K pathway inhibition activates AR signaling by relieving feedback inhibition of HER kinases. Similarly, AR inhibition activates AKT signaling by reducing levels of the AKT phosphatase PHLPP. Thus, these two oncogenic pathways cross-regulate each other by reciprocal feedback. Inhibition of one activates the other, thereby maintaining tumor cell survival. However, combined pharmacologic inhibition of PI3K and AR signaling caused near-complete prostate cancer regressions in a Pten-deficient murine prostate cancer model and in human prostate cancer xenografts, indicating that both pathways coordinately support survival.

965 citations


"PCSD1, a new patient-derived model ..." refers background in this paper

  • ...Signaling cross-talk as a mechanism of castrate-resistance in prostate cancer that alters steroid hormone receptor activity and transcriptional regulation of gene expression has been demonstrated for AR in as well as other steroid hormone receptors such as GR [19-23]....

    [...]


Related Papers (5)