scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pediatric Extracorporeal Life Support Organization Registry International Report 2016.

TL;DR: Adverse events including neurologic events were common during ECLS, a fact that underscores the opportunity and need to promote quality improvement work.
Abstract: The purpose of this report is to describe the international growth, outcomes, complications, and technology used in pediatric extracorporeal life support (ECLS) from 2009 to 2015 as reported by participating centers in the Extracorporeal Life Support Organization (ELSO). To date, there are 59,969 children who have received ECLS in the ELSO Registry; among those, 21,907 received ECLS since 2009 with an overall survival to hospital discharge rate of 61%. In 2009, 2,409 ECLS cases were performed at 157 centers. By 2015, that number grew to 2,992 cases in 227 centers, reflecting a 24% increase in patients and 55% growth in centers. ECLS delivered to neonates (0-28 days) for respiratory support was the largest subcategory of ECLS among children <18-years old. Overall, 48% of ECLS was delivered for respiratory support and 52% was for cardiac support or extracorporeal life support to support cardiopulmonary resuscitation (ECPR). During the study period, over half of children were supported on ECLS with centrifugal pumps (51%) and polymethylpentene oxygenators (52%). Adverse events including neurologic events were common during ECLS, a fact that underscores the opportunity and need to promote quality improvement work.
Citations
More filters
Journal ArticleDOI
TL;DR: These European Resuscitation Council Paediatric Life Support (PLS) guidelines, are based on the 2020 International Consensus on Cardiopulmonary Resuscitations Science with Treatment Recommendations.

145 citations

Journal ArticleDOI
TL;DR: The writing group reaffirmed the 2015 pediatric advanced life support guideline recommendation that either lidocaine or amiodarone may be used to treat pediatric patients with shock-refractory ventricular fibrillation or pulseless ventricular tachycardia.
Abstract: This 2019 focused update to the American Heart Association pediatric advanced life support guidelines follows the 2018 and 2019 systematic reviews performed by the Pediatric Life Support Task Force of the International Liaison Committee on Resuscitation. It aligns with the continuous evidence review process of the International Liaison Committee on Resuscitation, with updates published when the International Liaison Committee on Resuscitation completes a literature review based on new published evidence. This update provides the evidence review and treatment recommendations for advanced airway management in pediatric cardiac arrest, extracorporeal cardiopulmonary resuscitation in pediatric cardiac arrest, and pediatric targeted temperature management during post-cardiac arrest care. The writing group analyzed the systematic reviews and the original research published for each of these topics. For airway management, the writing group concluded that it is reasonable to continue bag-mask ventilation (versus attempting an advanced airway such as endotracheal intubation) in patients with out-of-hospital cardiac arrest. When extracorporeal membrane oxygenation protocols and teams are readily available, extracorporeal cardiopulmonary resuscitation should be considered for patients with cardiac diagnoses and in-hospital cardiac arrest. Finally, it is reasonable to use targeted temperature management of 32°C to 34°C followed by 36°C to 37.5°C, or to use targeted temperature management of 36°C to 37.5°C, for pediatric patients who remain comatose after resuscitation from out-of-hospital cardiac arrest or in-hospital cardiac arrest.

115 citations

Journal ArticleDOI
TL;DR: The authors discuss the complexities of anticoagulation monitoring and therapeutic intervention for patients on ECMO and examine the challenges surrounding AT supplementation given both the historical and current perspectives summarized in the literature on these topics.
Abstract: During extracorporeal membrane oxygenation (ECMO), a delicate balance is required to titrate systemic anticoagulation to prevent thrombotic complications within the circuit and prevent bleeding in the patient. Despite focused efforts to achieve this balance, the frequency of both thrombotic and bleeding events remains high. Anticoagulation is complicated to manage in this population due to the complexities of the hemostatic system that are compounded by age-related developmental hemostatic changes, variable effects of the etiology of critical illness on hemostasis, and blood-circuit interaction. Lack of high-quality data to guide anticoagulation management in ECMO patients results in marked practice variability among centers. One aspect of anticoagulation therapy that is particularly challenging is the use of antithrombin (AT) supplementation for heparin resistance. This is especially controversial in the neonatal and pediatric population due to the baseline higher risk of bleeding in this cohort. The indication for AT supplementation is further compounded by the potential inaccuracy of the diagnosis of heparin resistance based on the standard laboratory parameters used to assess heparin effect. With concerns regarding the adverse impact of bleeding and thrombosis, clinicians and institutions are faced with making difficult, real-time decisions aimed at optimizing anticoagulation in this setting. In this clinically focused review, the authors discuss the complexities of anticoagulation monitoring and therapeutic intervention for patients on ECMO and examine the challenges surrounding AT supplementation given both the historical and current perspectives summarized in the literature on these topics.

111 citations

Journal ArticleDOI
TL;DR: These guidelines are intended for educational use to build the knowledge of physicians and other health professionals in assessing the conditions and managing the treatment of patients undergoing ECLS / ECMO and describe what are believed to be useful and safe practice for extracorporeal life support (ECLS, ECMO) as mentioned in this paper .
Abstract: These guidelines for adult and pediatric anticoagulation for extracorporeal membrane oxygenation are intended for educational use to build the knowledge of physicians and other health professionals in assessing the conditions and managing the treatment of patients undergoing ECLS / ECMO and describe what are believed to be useful and safe practice for extracorporeal life support (ECLS, ECMO) but these are not necessarily consensus recommendations. The aim of clinical guidelines are to help clinicians to make informed decisions about their patients. However, adherence to a guideline does not guarantee a successful outcome. Ultimately, healthcare professionals must make their own treatment decisions about care on a case-by-case basis, after consultation with their patients, using their clinical judgment, knowledge and expertise. These guidelines do not take the place of physicians' and other health professionals' judgment in diagnosing and treatment of particular patients. These guidelines are not intended to and should not be interpreted as setting a standard of care or be deemed inclusive of all proper methods of care nor exclusive of other methods of care reasonably directed to obtaining the same results. The ultimate judgment must be made by the physician and other health professionals and the patient in light of all the circumstances presented by the individual patient, and the known variability and biological behavior of the clinical condition. These guidelines reflect the data at the time the guidelines were prepared; the results of subsequent studies or other information may cause revisions to the recommendations in these guidelines to be prudent to reflect new data, but ELSO is under no obligation to provide updates. In no event will ELSO be liable for any decision made or action taken in reliance upon the information provided through these guidelines.

88 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of the literature with respect to the prevalence of ECMO use, patient characteristics, ECMO management, and in-hospital and early post-discharge patient outcomes for those treated for post-cardiotomy heart, lung, or heart-lung failure is presented.
Abstract: Veno-arterial extracorporeal membrane oxygenation (ECMO) is established therapy for short-term circulatory support for children with life-treating cardiorespiratory dysfunction. In children with congenital heart disease (CHD), ECMO is commonly used to support patients with post-cardiotomy shock or complications including intractable arrhythmias, cardiac arrest, and acute respiratory failure. Cannulation configurations include central, when the right atrium and aorta are utilized in patients with recent sternotomy, or peripheral, when cannulation of the neck or femoral vessels are used in non-operative patients. ECMO can be used to support any form of cardiac disease, including univentricular palliated circulation. Although veno-arterial ECMO is commonly used to support children with CHD, veno-venous ECMO has been used in selected patients with hypoxemia or ventilatory failure in the presence of good cardiac function. ECMO use and outcomes in the CHD population are mainly informed by single-center studies and reports from collated registry data. Significant knowledge gaps remain, including optimal patient selection, timing of ECMO deployment, duration of support, anti-coagulation, complications, and the impact of these factors on short- and long-term outcomes. This report, therefore, aims to present a comprehensive overview of the available literature informing patient selection, ECMO management, and in-hospital and early post-discharge outcomes in pediatric patients treated with ECMO for post-cardiotomy cardiorespiratory failure.

80 citations

References
More filters
Journal ArticleDOI
TL;DR: The form and validation results of APACHE II, a severity of disease classification system that uses a point score based upon initial values of 12 routine physiologic measurements, age, and previous health status, are presented.
Abstract: This paper presents the form and validation results of APACHE II, a severity of disease classification system. APACHE II uses a point score based upon initial values of 12 routine physiologic measurements, age, and previous health status to provide a general measure of severity of disease. An increasing score (range 0 to 71) was closely correlated with the subsequent risk of hospital death for 5815 intensive care admissions from 13 hospitals. This relationship was also found for many common diseases. When APACHE II scores are combined with an accurate description of disease, they can prognostically stratify acutely ill patients and assist investigators comparing the success of new or differing forms of therapy. This scoring index can be used to evaluate the use of hospital resources and compare the efficacy of intensive care in different hospitals or over time.

14,583 citations

Journal ArticleDOI
22 Dec 1993-JAMA
TL;DR: The SAPS II, based on a large international sample of patients, provides an estimate of the risk of death without having to specify a primary diagnosis, and is a starting point for future evaluation of the efficiency of intensive care units.
Abstract: Objective. —To develop and validate a new Simplified Acute Physiology Score, the SAPS II, from a large sample of surgical and medical patients, and to provide a method to convert the score to a probability of hospital mortality. Design and Setting. —The SAPS II and the probability of hospital mortality were developed and validated using data from consecutive admissions to 137 adult medical and/or surgical intensive care units in 12 countries. Patients. —The 13 152 patients were randomly divided into developmental (65%) and validation (35%) samples. Patients younger than 18 years, burn patients, coronary care patients, and cardiac surgery patients were excluded. Outcome Measure. —Vital status at hospital discharge. Results. —The SAPS II includes only 17 variables: 12 physiology variables, age, type of admission (scheduled surgical, unscheduled surgical, or medical), and three underlying disease variables (acquired immunodeficiency syndrome, metastatic cancer, and hematologic malignancy). Goodness-of-fit tests indicated that the model performed well in the developmental sample and validated well in an independent sample of patients (P=.883 andP=.104 in the developmental and validation samples, respectively). The area under the receiver operating characteristic curve was 0.88 in the developmental sample and 0.86 in the validation sample. Conclusion. —The SAPS II, based on a large international sample of patients, provides an estimate of the risk of death without having to specify a primary diagnosis. This is a starting point for future evaluation of the efficiency of intensive care units. (JAMA. 1993;270:2957-2963)

5,836 citations

Journal ArticleDOI
TL;DR: The form and validation results of APACHE II, a severity of disease classification system, are presented, showing an increasing score was closely correlated with the subsequent risk of hospital death for 5815 intensive care admissions from 13 hospitals.
Abstract: This paper presents the form and validation results of APACHE II, a severity of disease classification system. APACHE II uses a point score based upon initial values of 12 routine physiologic measurements, age, and previous health status to provide a general measure of severity of disease. An increasing score (range 0 to 71) was closely correlated with the subsequent risk of hospital death for 5815 intensive care admissions from 13 hospitals. This relationship was also found for many common diseases.When APACHE II scores are combined with an accurate description of disease, they can prognostically stratify acutely ill patients and assist investigators comparing the success of new or differing forms of therapy. This scoring index can be used to evaluate the use of hospital resources and compare the efficacy of intensive care in different hospitals or over time.

5,266 citations

Journal ArticleDOI
10 Oct 2001-JAMA
TL;DR: In this article, the authors evaluated the usefulness of repeated measurement of the Sequential Organ Failure Assessment (SOFA) score for prediction of mortality in intensive care unit (ICU) patients.
Abstract: ContextEvaluation of trends in organ dysfunction in critically ill patients may help predict outcome.ObjectiveTo determine the usefulness of repeated measurement the Sequential Organ Failure Assessment (SOFA) score for prediction of mortality in intensive care unit (ICU) patients.DesignProspective, observational cohort study conducted from April 1 to July 31, 1999.SettingA 31-bed medicosurgical ICU at a university hospital in Belgium.PatientsThree hundred fifty-two consecutive patients (mean age, 59 years) admitted to the ICU for more than 24 hours for whom the SOFA score was calculated on admission and every 48 hours until discharge.Main Outcome MeasuresInitial SOFA score (0-24), Δ-SOFA scores (differences between subsequent scores), and the highest and mean SOFA scores obtained during the ICU stay and their correlations with mortality.ResultsThe initial, highest, and mean SOFA scores correlated well with mortality. Initial and highest scores of more than 11 or mean scores of more than 5 corresponded to mortality of more than 80%. The predictive value of the mean score was independent of the length of ICU stay. In univariate analysis, mean and highest SOFA scores had the strongest correlation with mortality, followed by Δ-SOFA and initial SOFA scores. The area under the receiver operating characteristic curve was largest for highest scores (0.90; SE, 0.02; P<.001 vs initial score). When analyzing trends in the SOFA score during the first 96 hours, regardless of the initial score, the mortality rate was at least 50% when the score increased, 27% to 35% when it remained unchanged, and less than 27% when it decreased. Differences in mortality were better predicted in the first 48 hours than in the subsequent 48 hours. There was no significant difference in the length of stay among these groups. Except for initial scores of more than 11 (mortality rate >90%), a decreasing score during the first 48 hours was associated with a mortality rate of less than 6%, while an unchanged or increasing score was associated with a mortality rate of 37% when the initial score was 2 to 7 and 60% when the initial score was 8 to 11.ConclusionsSequential assessment of organ dysfunction during the first few days of ICU admission is a good indicator of prognosis. Both the mean and highest SOFA scores are particularly useful predictors of outcome. Independent of the initial score, an increase in SOFA score during the first 48 hours in the ICU predicts a mortality rate of at least 50%.

2,190 citations

Journal ArticleDOI
TL;DR: A third-generation pediatric physiology-based score for mortality risk, Pediatric Risk of Mortality III (PRISM III), was developed and validated and resulted in several improvements over the original PRISM.
Abstract: Objectives The relationship between physiologic status and mortality risk should be reevaluated as new treatment protocols, therapeutic interventions, and monitoring strategies are introduced, and as patient populations change. We developed and validated a third-generation pediatric physiology-based

1,523 citations

Related Papers (5)