scispace - formally typeset
Search or ask a question
Posted Content

PEEL: A Provable Removal Attack on Deep Hiding.

TL;DR: Li et al. as mentioned in this paper proposed a novel ProvablE rEmovaL attack (PEEL) using image inpainting to remove secret images from containers without any prior knowledge about the deep hiding scheme.
Abstract: Deep hiding, embedding images into another using deep neural networks, has shown its great power in increasing the message capacity and robustness. In this paper, we conduct an in-depth study of state-of-the-art deep hiding schemes and analyze their hidden vulnerabilities. Then, according to our observations and analysis, we propose a novel ProvablE rEmovaL attack (PEEL) using image inpainting to remove secret images from containers without any prior knowledge about the deep hiding scheme. We also propose a systemic methodology to improve the efficiency and image quality of PEEL by carefully designing a removal strategy and fully utilizing the visual information of containers. Extensive evaluations show our attacks can completely remove secret images and has negligible impact on the quality of containers.
References
More filters
Book ChapterDOI
08 Oct 2016
TL;DR: In this paper, the authors combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image style transfer, where a feedforward network is trained to solve the optimization problem proposed by Gatys et al. in real-time.
Abstract: We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a per-pixel loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing perceptual loss functions based on high-level features extracted from pretrained networks. We combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al. in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results.

6,639 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: A novel deep learning framework for attribute prediction in the wild that cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently.
Abstract: Predicting face attributes in the wild is challenging due to complex face variations. We propose a novel deep learning framework for attribute prediction in the wild. It cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently. LNet is pre-trained by massive general object categories for face localization, while ANet is pre-trained by massive face identities for attribute prediction. This framework not only outperforms the state-of-the-art with a large margin, but also reveals valuable facts on learning face representation. (1) It shows how the performances of face localization (LNet) and attribute prediction (ANet) can be improved by different pre-training strategies. (2) It reveals that although the filters of LNet are fine-tuned only with image-level attribute tags, their response maps over entire images have strong indication of face locations. This fact enables training LNet for face localization with only image-level annotations, but without face bounding boxes or landmarks, which are required by all attribute recognition works. (3) It also demonstrates that the high-level hidden neurons of ANet automatically discover semantic concepts after pre-training with massive face identities, and such concepts are significantly enriched after fine-tuning with attribute tags. Each attribute can be well explained with a sparse linear combination of these concepts.

6,273 citations

Journal ArticleDOI
TL;DR: An image information measure is proposed that quantifies the information that is present in the reference image and how much of this reference information can be extracted from the distorted image and combined these two quantities form a visual information fidelity measure for image QA.
Abstract: Measurement of visual quality is of fundamental importance to numerous image and video processing applications. The goal of quality assessment (QA) research is to design algorithms that can automatically assess the quality of images or videos in a perceptually consistent manner. Image QA algorithms generally interpret image quality as fidelity or similarity with a "reference" or "perfect" image in some perceptual space. Such "full-reference" QA methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychovisual features of the human visual system (HVS), or by signal fidelity measures. In this paper, we approach the image QA problem as an information fidelity problem. Specifically, we propose to quantify the loss of image information to the distortion process and explore the relationship between image information and visual quality. QA systems are invariably involved with judging the visual quality of "natural" images and videos that are meant for "human consumption." Researchers have developed sophisticated models to capture the statistics of such natural signals. Using these models, we previously presented an information fidelity criterion for image QA that related image quality with the amount of information shared between a reference and a distorted image. In this paper, we propose an image information measure that quantifies the information that is present in the reference image and how much of this reference information can be extracted from the distorted image. Combining these two quantities, we propose a visual information fidelity measure for image QA. We validate the performance of our algorithm with an extensive subjective study involving 779 images and show that our method outperforms recent state-of-the-art image QA algorithms by a sizeable margin in our simulations. The code and the data from the subjective study are available at the LIVE website.

3,146 citations

Journal ArticleDOI
20 Jul 2017
TL;DR: This work presents a novel approach for image completion that results in images that are both locally and globally consistent, with a fully-convolutional neural network that can complete images of arbitrary resolutions by filling-in missing regions of any shape.
Abstract: We present a novel approach for image completion that results in images that are both locally and globally consistent. With a fully-convolutional neural network, we can complete images of arbitrary resolutions by filling-in missing regions of any shape. To train this image completion network to be consistent, we use global and local context discriminators that are trained to distinguish real images from completed ones. The global discriminator looks at the entire image to assess if it is coherent as a whole, while the local discriminator looks only at a small area centered at the completed region to ensure the local consistency of the generated patches. The image completion network is then trained to fool the both context discriminator networks, which requires it to generate images that are indistinguishable from real ones with regard to overall consistency as well as in details. We show that our approach can be used to complete a wide variety of scenes. Furthermore, in contrast with the patch-based approaches such as PatchMatch, our approach can generate fragments that do not appear elsewhere in the image, which allows us to naturally complete the images of objects with familiar and highly specific structures, such as faces.

1,961 citations

Book ChapterDOI
28 Jun 2010
TL;DR: A complete methodology for designing practical and highly-undetectable stegosystems for real digital media and explains why high-dimensional models might be problem in steganalysis, and introduces HUGO, a new embedding algorithm for spatial-domain digital images and its performance with LSB matching.
Abstract: This paper presents a complete methodology for designing practical and highly-undetectable stegosystems for real digital media. The main design principle is to minimize a suitably-defined distortion by means of efficient coding algorithm. The distortion is defined as a weighted difference of extended state-of-the-art feature vectors already used in steganalysis. This allows us to "preserve" the model used by steganalyst and thus be undetectable even for large payloads. This framework can be efficiently implemented even when the dimensionality of the feature set used by the embedder is larger than 107. The high dimensional model is necessary to avoid known security weaknesses. Although high-dimensional models might be problem in steganalysis, we explain, why they are acceptable in steganography. As an example, we introduce HUGO, a new embedding algorithm for spatial-domain digital images and we contrast its performance with LSB matching. On the BOWS2 image database and in contrast with LSB matching, HUGO allows the embedder to hide 7× longer message with the same level of security level.

808 citations