scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Penalized Composite Quasi-Likelihood for Ultrahigh-Dimensional Variable Selection

TL;DR: A data‐driven weighted linear combination of convex loss functions, together with weighted L1‐penalty is proposed and established a strong oracle property of the method proposed that has both the model selection consistency and estimation efficiency for the true non‐zero coefficients.
Abstract: In high-dimensional model selection problems, penalized least-square approaches have been extensively used. This paper addresses the question of both robustness and efficiency of penalized model selection methods, and proposes a data-driven weighted linear combination of convex loss functions, together with weighted L1-penalty. It is completely data-adaptive and does not require prior knowledge of the error distribution. The weighted L1-penalty is used both to ensure the convexity of the penalty term and to ameliorate the bias caused by the L1-penalty. In the setting with dimensionality much larger than the sample size, we establish a strong oracle property of the proposed method that possesses both the model selection consistency and estimation efficiency for the true non-zero coefficients. As specific examples, we introduce a robust method of composite L1-L2, and optimal composite quantile method and evaluate their performance in both simulated and real data examples.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A novel penalised weighted least squares procedure is introduced to select the significant covariates and identify the constant coefficients among the coefficients of the selected covariates, which could thus specify the semiparametric modelling structure.
Abstract: In this paper, we study the model selection and structure specification for the generalised semi-varying coefficient models (GSVCMs), where the number of potential covariates is allowed to be larger than the sample size. We first propose a penalised likelihood method with the LASSO penalty function to obtain the preliminary estimates of the functional coefficients. Then, using the quadratic approximation for the local log-likelihood function and the adaptive group LASSO penalty (or the local linear approximation of the group SCAD penalty) with the help of the preliminary estimation of the functional coefficients, we introduce a novel penalised weighted least squares procedure to select the significant covariates and identify the constant coefficients among the coefficients of the selected covariates, which could thus specify the semiparametric modelling structure. The developed model selection and structure specification approach not only inherits many nice statistical properties from the local maximum likelihood estimation and nonconcave penalised likelihood method, but also computationally attractive thanks to the computational algorithm that is proposed to implement our method. Under some mild conditions, we establish the asymptotic properties for the proposed model selection and estimation procedure such as the sparsity and oracle property. We also conduct simulation studies to examine the finite sample performance of the proposed method, and finally apply the method to analyse a real data set, which leads to some interesting findings.

32 citations

Journal ArticleDOI
TL;DR: In this paper, a hierarchical Bayesian model is used to shrink the fixed and random effects towards the common population values by introducing an l 1 penalty in the mixed quantile regression check function.
Abstract: In this paper, we discuss the regularization in linear-mixed quantile regression. A hierarchical Bayesian model is used to shrink the fixed and random effects towards the common population values by introducing an l1 penalty in the mixed quantile regression check function. A Gibbs sampler is developed to simulate the parameters from the posterior distributions. Through simulation studies and analysis of an age-related macular degeneration (ARMD) data, we assess the performance of the proposed method. The simulation studies and the ARMD data analysis indicate that the proposed method performs well in comparison with the other approaches.

31 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider a high-dimensional quantile regression model where the sparsity structure may differ between two sub-populations and develop l 1-penalized estimators of both regression coefficients and the threshold parameter.
Abstract: In this paper, we consider a high-dimensional quantile regression model where the sparsity structure may differ between two sub-populations. We develop l1-penalized estimators of both regression coefficients and the threshold parameter. Our penalized estimators not only select covariates but also discriminate between a model with homogeneous sparsity and a model with a change point. As a result, it is not necessary to know or pretest whether the change point is present, or where it occurs. Our estimator of the change point achieves an oracle property in the sense that its asymptotic distribution is the same as if the unknown active sets of regression coefficients were known. Importantly, we establish this oracle property without a perfect covariate selection, thereby avoiding the need for the minimum level condition on the signals of active covariates. Dealing with high-dimensional quantile regression with an unknown change point calls for a new proof technique since the quantile loss function is ...

31 citations

Journal ArticleDOI
TL;DR: A novel approach for high-dimensional regression with theoretical guarantees that overcomes the challenge of tuning parameter selection of Lasso and possesses several appealing properties, and is robust with substantial efficiency gain for heavy-tailed random errors while maintaining high efficiency for normal random errors.
Abstract: We introduce a novel approach for high-dimensional regression with theoretical guarantees. The new procedure overcomes the challenge of tuning parameter selection of Lasso and possesses several app...

31 citations


Cites background from "Penalized Composite Quasi-Likelihoo..."

  • ...An alternative robust loss function is the least absolute deviation loss (or more generally, quantile loss) (see, e.g., Belloni, Chernozhukov, and Wang 2011; Bradic, Fan, and Wang 2011; Wang, Wu, and Li 2012; Wang 2013; Fan, Fan, and Barut 2014)....

    [...]

Posted Content
TL;DR: In this article, a new class of semiparametric exponential family graphical models for the analysis of high dimensional mixed data is proposed, and a symmetric pairwise score test for the presence of a single edge in the graph is proposed.
Abstract: We propose a new class of semiparametric exponential family graphical models for the analysis of high dimensional mixed data. Different from the existing mixed graphical models, we allow the nodewise conditional distributions to be semiparametric generalized linear models with unspecified base measure functions. Thus, one advantage of our method is that it is unnecessary to specify the type of each node and the method is more convenient to apply in practice. Under the proposed model, we consider both problems of parameter estimation and hypothesis testing in high dimensions. In particular, we propose a symmetric pairwise score test for the presence of a single edge in the graph. Compared to the existing methods for hypothesis tests, our approach takes into account of the symmetry of the parameters, such that the inferential results are invariant with respect to the different parametrizations of the same edge. Thorough numerical simulations and a real data example are provided to back up our results.

28 citations

References
More filters
Journal ArticleDOI
TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Abstract: SUMMARY We propose a new method for estimation in linear models. The 'lasso' minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described.

40,785 citations

Journal ArticleDOI
TL;DR: In this article, penalized likelihood approaches are proposed to handle variable selection problems, and it is shown that the newly proposed estimators perform as well as the oracle procedure in variable selection; namely, they work as well if the correct submodel were known.
Abstract: Variable selection is fundamental to high-dimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized likelihood approaches are proposed to handle these kinds of problems. The proposed methods select variables and estimate coefficients simultaneously. Hence they enable us to construct confidence intervals for estimated parameters. The proposed approaches are distinguished from others in that the penalty functions are symmetric, nonconcave on (0, ∞), and have singularities at the origin to produce sparse solutions. Furthermore, the penalty functions should be bounded by a constant to reduce bias and satisfy certain conditions to yield continuous solutions. A new algorithm is proposed for optimizing penalized likelihood functions. The proposed ideas are widely applicable. They are readily applied to a variety of ...

8,314 citations

Journal ArticleDOI
TL;DR: A publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates is described.
Abstract: The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS modification efficiently implements Forward Stagewise linear regression, another promising new model selection method; this connection explains the similar numerical results previously observed for the Lasso and Stagewise, and helps us understand the properties of both methods, which are seen as constrained versions of the simpler LARS algorithm. (3) A simple approximation for the degrees of freedom of a LARS estimate is available, from which we derive a Cp estimate of prediction error; this allows a principled choice among the range of possible LARS estimates. LARS and its variants are computationally efficient: the paper describes a publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates.

7,828 citations


"Penalized Composite Quasi-Likelihoo..." refers background or methods in this paper

  • ...…(16) can be recast as a penalized weighted least square regression argmin β n∑ i=1 w1∣∣∣Yi −XTi β̂ (0) ∣∣∣ + w2 ( Yi −XTi β )2 + n p∑ j=1 γλ(|β(0)j |)|βj | which can be efficiently solved by pathwise coordinate optimization (Friedman et al., 2008) or least angle regression (Efron et al., 2004)....

    [...]

  • ...) are all nonnegative. This class of problems can be solved with fast and efficient computational algorithms such as pathwise coordinate optimization (Friedman et al., 2008) and least angle regression (Efron et al., 2004). One particular example is the combination of L 1 and L 2 regressions, in which K= 2, ρ 1(t) = |t−b 0|andρ 2(t) = t2. Here b 0 denotes themedian of error distributionε. Iftheerror distribution is sym...

    [...]

  • ...i=1 w 1 Yi −XT i βˆ (0) +w 2 Yi −XT i β 2 +n Xp j=1 γλ(|β (0) j |)|βj| which can be efficiently solved by pathwise coordinate optimization (Friedman et al., 2008) or least angle regression (Efron et al., 2004). If b 0 6= 0, the penalized least-squares problem ( 16) is somewhat different from (5) since we have an additional parameter b 0. Using the same arguments, and treating b 0 as an additional parameter ...

    [...]

  • ...This class of problems can be solved with fast and efficient computational algorithms such as pathwise coordinate optimization (Friedman et al., 2008) and least angle regression (Efron et al., 2004)....

    [...]

Journal ArticleDOI
Hui Zou1
TL;DR: A new version of the lasso is proposed, called the adaptive lasso, where adaptive weights are used for penalizing different coefficients in the ℓ1 penalty, and the nonnegative garotte is shown to be consistent for variable selection.
Abstract: The lasso is a popular technique for simultaneous estimation and variable selection. Lasso variable selection has been shown to be consistent under certain conditions. In this work we derive a necessary condition for the lasso variable selection to be consistent. Consequently, there exist certain scenarios where the lasso is inconsistent for variable selection. We then propose a new version of the lasso, called the adaptive lasso, where adaptive weights are used for penalizing different coefficients in the l1 penalty. We show that the adaptive lasso enjoys the oracle properties; namely, it performs as well as if the true underlying model were given in advance. Similar to the lasso, the adaptive lasso is shown to be near-minimax optimal. Furthermore, the adaptive lasso can be solved by the same efficient algorithm for solving the lasso. We also discuss the extension of the adaptive lasso in generalized linear models and show that the oracle properties still hold under mild regularity conditions. As a bypro...

6,765 citations

Journal ArticleDOI
TL;DR: In this article, a new approach toward a theory of robust estimation is presented, which treats in detail the asymptotic theory of estimating a location parameter for contaminated normal distributions, and exhibits estimators that are asyptotically most robust (in a sense to be specified) among all translation invariant estimators.
Abstract: This paper contains a new approach toward a theory of robust estimation; it treats in detail the asymptotic theory of estimating a location parameter for contaminated normal distributions, and exhibits estimators—intermediaries between sample mean and sample median—that are asymptotically most robust (in a sense to be specified) among all translation invariant estimators. For the general background, see Tukey (1960) (p. 448 ff.)

5,628 citations