scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Penalty Function Methods for Constrained Optimization with Genetic Algorithms

01 Apr 2005-Mathematical & Computational Applications (Association for Scientific Research)-Vol. 10, Iss: 1, pp 45-56
TL;DR: These penalty-based methods for handling constraints in Genetic Algorithms are presented and discussed and their strengths and weaknesses are discussed.
Abstract: Genetic Algorithms are most directly suited to unconstrained optimization. Application of Genetic Algorithms to constrained optimization problems is often a challenging effort. Several methods have been proposed for handling constraints. The most common method in Genetic Algorithms to handle constraints is to use penalty functions. In this paper, we present these penalty-based methods and discuss their strengths and weaknesses.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed a methodology for optimizing the loaded contact pattern of spiral bevel and hypoid gears, which is divided into two parts: the establishment of an optimization model and a method for solving that model.

23 citations

Patent
03 Apr 2015
TL;DR: In this article, a transform learning regularizer is used for solving inverse problems when reconstructing an image from the imaging measurements, the instructions executable to adapt a transform model to a first set of image patches, and store the second image in the computer-readable medium, the two image displayable on a display device.
Abstract: A system executes efficient computational methods for high quality image reconstructions from a relatively small number of noisy (or degraded) sensor imaging measurements or scans. The system includes a processing device and instructions. The processing device executes the instructions to employ transform learning as a regularizer for solving inverse problems when reconstructing an image from the imaging measurements, the instructions executable to: adapt a transform model to a first set of image patches of a first set of images containing at least a first image, to model the first set of image patches as sparse in a transform domain while allowing deviation from perfect sparsity; reconstruct a second image by minimizing an optimization objective comprising a transform-based regularizer that employs the transform model, and a data fidelity term formed using the imaging measurements; and store the second image in the computer-readable medium, the second image displayable on a display device.

23 citations

Journal ArticleDOI
TL;DR: In this paper, two approaches to solve the problem of model predictive control of an unknown system that is modelled by Gaussian process (GP) techniques are proposed, namely, GPMPC1 and GPPC2, where the original stochastic MPC problem is relaxed to a deterministic non-linear MPC based on a basic linearised GP local model.
Abstract: Model predictive control (MPC) of an unknown system that is modelled by Gaussian process (GP) techniques is studied. Using GP, the variances computed during the modelling and inference processes allow us to take model uncertainty into account. The main issue in using MPC to control systems modelled by GP is the propagation of such uncertainties within the control horizon. In this study, two approaches to solve this problem, called GPMPC1 and GPMPC2, are proposed. With GPMPC1, the original stochastic model predictive control (SMPC) problem is relaxed to a deterministic non-linear MPC based on a basic linearised GP local model. The resulting optimisation problem, though non-convex, can be solved by the sequential quadratic programming. By incorporating the model variance into the state vector, an extended local model is derived. This model allows us to relax the non-convex MPC problem to a convex one which can be solved by an active-set method efficiently. The performance of both approaches is demonstrated by applying them to two trajectory tracking problems. Results show that both GPMPC1 and GPMPC2 produce effective controls but GPMPC2 is much more efficient computationally.

22 citations

Journal ArticleDOI
TL;DR: An algorithm is developed to minimize the auxiliary function to find an approximate constrained global minimizer of the constrained global minimizing problem, which can escape from the previously converged local minimizers, and can converge to an approximate global minimizers of the problem asymptotically with probability one.

22 citations

Journal ArticleDOI
TL;DR: The load transfer mechanism in cold-formed steel (CFS) bolted moment connections is mainly through the bolt group in the web of beam elements, which may lead to relatively large bimoment an....
Abstract: The load transfer mechanism in cold-formed steel (CFS) bolted moment connections is mainly through the bolt group in the web of beam elements, which may lead to relatively large bimoment an...

22 citations

References
More filters
Book
01 Sep 1988
TL;DR: In this article, the authors present the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields, including computer programming and mathematics.
Abstract: From the Publisher: This book brings together - in an informal and tutorial fashion - the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields Major concepts are illustrated with running examples, and major algorithms are illustrated by Pascal computer programs No prior knowledge of GAs or genetics is assumed, and only a minimum of computer programming and mathematics background is required

52,797 citations

Book
01 Jan 1992
TL;DR: GAs and Evolution Programs for Various Discrete Problems, a Hierarchy of Evolution Programs and Heuristics, and Conclusions.
Abstract: 1 GAs: What Are They?.- 2 GAs: How Do They Work?.- 3 GAs: Why Do They Work?.- 4 GAs: Selected Topics.- 5 Binary or Float?.- 6 Fine Local Tuning.- 7 Handling Constraints.- 8 Evolution Strategies and Other Methods.- 9 The Transportation Problem.- 10 The Traveling Salesman Problem.- 11 Evolution Programs for Various Discrete Problems.- 12 Machine Learning.- 13 Evolutionary Programming and Genetic Programming.- 14 A Hierarchy of Evolution Programs.- 15 Evolution Programs and Heuristics.- 16 Conclusions.- Appendix A.- Appendix B.- Appendix C.- Appendix D.- References.

12,212 citations

Book
03 Mar 1993
TL;DR: The book is a solid reference for professionals as well as a useful text for students in the fields of operations research, management science, industrial engineering, applied mathematics, and also in engineering disciplines that deal with analytical optimization techniques.
Abstract: COMPREHENSIVE COVERAGE OF NONLINEAR PROGRAMMING THEORY AND ALGORITHMS, THOROUGHLY REVISED AND EXPANDED"Nonlinear Programming: Theory and Algorithms"--now in an extensively updated Third Edition--addresses the problem of optimizing an objective function in the presence of equality and inequality constraints. Many realistic problems cannot be adequately represented as a linear program owing to the nature of the nonlinearity of the objective function and/or the nonlinearity of any constraints. The "Third Edition" begins with a general introduction to nonlinear programming with illustrative examples and guidelines for model construction.Concentration on the three major parts of nonlinear programming is provided: Convex analysis with discussion of topological properties of convex sets, separation and support of convex sets, polyhedral sets, extreme points and extreme directions of polyhedral sets, and linear programmingOptimality conditions and duality with coverage of the nature, interpretation, and value of the classical Fritz John (FJ) and the Karush-Kuhn-Tucker (KKT) optimality conditions; the interrelationships between various proposed constraint qualifications; and Lagrangian duality and saddle point optimality conditionsAlgorithms and their convergence, with a presentation of algorithms for solving both unconstrained and constrained nonlinear programming problemsImportant features of the "Third Edition" include: New topics such as second interior point methods, nonconvex optimization, nondifferentiable optimization, and moreUpdated discussion and new applications in each chapterDetailed numerical examples and graphical illustrationsEssential coverage of modeling and formulating nonlinear programsSimple numerical problemsAdvanced theoretical exercisesThe book is a solid reference for professionals as well as a useful text for students in the fields of operations research, management science, industrial engineering, applied mathematics, and also in engineering disciplines that deal with analytical optimization techniques. The logical and self-contained format uniquely covers nonlinear programming techniques with a great depth of information and an abundance of valuable examples and illustrations that showcase the most current advances in nonlinear problems.

6,259 citations

Journal ArticleDOI
TL;DR: GA's population-based approach and ability to make pair-wise comparison in tournament selection operator are exploited to devise a penalty function approach that does not require any penalty parameter to guide the search towards the constrained optimum.

3,495 citations


"Penalty Function Methods for Constr..." refers background in this paper

  • ...These approaches can be grouped in four major categories [28]: Category 1: Methods based on penalty functions - Death Penalty [2] - Static Penalties [15,20] - Dynamic Penalties [16,17] - Annealing Penalties [5,24] - Adaptive Penalties [10,12,35,37] - Segregated GA [21] - Co-evolutionary Penalties [8] Category 2: Methods based on a search of feasible solutions - Repairing unfeasible individuals [27] - Superiority of feasible points [9,32] - Behavioral memory [34]...

    [...]

Book
01 Jan 1996
TL;DR: In this work, the author compares the three most prominent representatives of evolutionary algorithms: genetic algorithms, evolution strategies, and evolutionary programming within a unified framework, thereby clarifying the similarities and differences of these methods.

2,679 citations