scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Peptide therapeutics: current status and future directions.

01 Jan 2015-Drug Discovery Today (Drug Discov Today)-Vol. 20, Iss: 1, pp 122-128
TL;DR: The current status, strengths, and weaknesses of peptides as medicines and the emerging new opportunities in peptide drug design and development are discussed.
About: This article is published in Drug Discovery Today.The article was published on 2015-01-01 and is currently open access. It has received 2136 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.
Abstract: Over the past decade, peptide drug discovery has experienced a revival of interest and scientific momentum, as the pharmaceutical industry has come to appreciate the role that peptide therapeutics can play in addressing unmet medical needs and how this class of compounds can be an excellent complement or even preferable alternative to small molecule and biological therapeutics. In this Perspective, we give a concise description of the recent progress in peptide drug discovery in a holistic manner, highlighting enabling technological advances affecting nearly every aspect of this field: from lead discovery, to synthesis and optimization, to peptide drug delivery. An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.

651 citations

Journal ArticleDOI
TL;DR: PEP-FOLD3 is a novel computational framework that allows both (i) de novo free or biased prediction for linear peptides between 5 and 50 amino acids, and (ii) the generation of native-like conformations of peptides interacting with a protein when the interaction site is known in advance.
Abstract: Structure determination of linear peptides of 5-50 amino acids in aqueous solution and interacting with proteins is a key aspect in structural biology. PEP-FOLD3 is a novel computational framework, that allows both (i) de novo free or biased prediction for linear peptides between 5 and 50 amino acids, and (ii) the generation of native-like conformations of peptides interacting with a protein when the interaction site is known in advance. PEP-FOLD3 is fast, and usually returns solutions in a few minutes. Testing PEP-FOLD3 on 56 peptides in aqueous solution led to experimental-like conformations for 80% of the targets. Using a benchmark of 61 peptide-protein targets starting from the unbound form of the protein receptor, PEP-FOLD3 was able to generate peptide poses deviating on average by 3.3A from the experimental conformation and return a native-like pose in the first 10 clusters for 52% of the targets. PEP-FOLD3 is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3.

627 citations


Cites background from "Peptide therapeutics: current statu..."

  • ...Peptides are a category of compounds that meets increasing interest as candidate therapeutics (1), and motivates numerous efforts....

    [...]

Journal ArticleDOI
TL;DR: Four scientists working in the 'undruggable' cancer research field are asked for their opinions on the most crucial advances, as well as the challenges and what the future holds for this important area of research.
Abstract: The term 'undruggable' was coined to describe proteins that could not be targeted pharmacologically. However, progress is being made to 'drug' many of these targets, and therefore more appropriate terms might be 'difficult to drug' or 'yet to be drugged'. Many desirable targets in cancer fall into this category, including the RAS and MYC oncogenes, and pharmacologically targeting these intractable proteins is now a key challenge in cancer research that requires innovation and the development of new technologies. In this Viewpoint article, we asked four scientists working in this field for their opinions on the most crucial advances, as well as the challenges and what the future holds for this important area of research.

529 citations

Journal ArticleDOI
TL;DR: The known key features of senescence, the cell-aut autonomous, and noncell-autonomous regulators of senescent cells are described, and the functional role of this fundamental process in different contexts is discussed in light of the development of novel therapeutic targets.
Abstract: Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.

503 citations

References
More filters
Journal ArticleDOI
TL;DR: This review summarizes the advances that have been made since then regarding protein stabilization and formulation and discusses the current understanding of chemical and physical instability.
Abstract: In 1989, Manning, Patel, and Borchardt wrote a review of protein stability (Manning et al, Pharm Res 6:903-918, 1989), which has been widely referenced ever since At the time, recombinant protein therapy was still in its infancy This review summarizes the advances that have been made since then regarding protein stabilization and formulation In addition to a discussion of the current understanding of chemical and physical instability, sections are included on stabilization in aqueous solution and the dried state, the use of chemical modification and mutagenesis to improve stability, and the interrelationship between chemical and physical instability

969 citations

Journal Article
TL;DR: PEG-modified cytokines have been constructed and one of the conjugates, PEG- modified granulocyte-macrophage colony-stimulating factor, showed dissociation of two biological properties, which may open new horizons to the application of PEGylation technology.
Abstract: Poly(ethylene glycol) (PEG) is a water soluble polymer that when covalently linked to proteins, alters their properties in ways that extend their potential uses. PEG-modified conjugates are being exploited in many different fields. The improved pharmacological performance of PEG-proteins when compared with their unmodified counterparts prompted the development of this type of conjugate as a therapeutic agent. Enzyme deficiencies for which therapy with the native enzyme was inefficient (due to rapid clearance and/or immunological reactions) can now be treated with equivalent PEG-enzymes. PEG-adenosine deaminase has already obtained FDA approval. PEG-modified cytokines have been constructed and, interestingly, one of the conjugates, PEG-modified granulocyte-macrophage colony-stimulating factor, showed dissociation of two biological properties. This novel observation may open new horizons to the application of PEGylation technology. The biotechnology industry has also found PEG-proteins very useful because PEG-enzymes can act as catalysts in organic solvents, thereby opening the possibility of producing desired stereoisomers, as opposed to the racemic mixture usually obtained in classical organic synthesis. Covalent attachment of PEG to proteins requires activation of the hydroxyl terminal group of the polymer with a suitable leaving group that can be displaced by nucleophilic attack of the epsilon-amino terminal of lysine residues (other nucleophilic groups can also interact). Several chemical groups have been exploited to activate PEG, thereby giving rise to a variety of PEG-proteins. Some of these varieties retain part of the activating group as a coupling moiety between PEG and protein and others provide a direct linkage. For each particular application, different coupling methods provide distinct advantages.(ABSTRACT TRUNCATED AT 250 WORDS)

718 citations

Journal ArticleDOI
TL;DR: An overview of the peptide therapeutics pipeline is provided, including therapeutic area and molecular targets, with a focus on glucagon-like peptide 1 receptor agonists, and areas for potential expansion are profiled.

614 citations

Journal ArticleDOI
TL;DR: This discovery and validation of a balanced and high-potency dual incretin agonist enables a more physiological approach to management of diseases associated with impaired glucose tolerance and represents a new class of drug candidates for the treatment of metabolic diseases.
Abstract: We report the discovery and translational therapeutic efficacy of a peptide with potent, balanced co-agonism at both of the receptors for the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This unimolecular dual incretin is derived from an intermixed sequence of GLP-1 and GIP, and demonstrated enhanced antihyperglycemic and insulinotropic efficacy relative to selective GLP-1 agonists. Notably, this superior efficacy translated across rodent models of obesity and diabetes, including db/db mice and ZDF rats, to primates (cynomolgus monkeys and humans). Furthermore, this co-agonist exhibited synergism in reducing fat mass in obese rodents, whereas a selective GIP agonist demonstrated negligible weight-lowering efficacy. The unimolecular dual incretins corrected two causal mechanisms of diabesity, adiposity-induced insulin resistance and pancreatic insulin deficiency, more effectively than did selective mono-agonists. The duration of action of the unimolecular dual incretins was refined through site-specific lipidation or PEGylation to support less frequent administration. These peptides provide comparable pharmacology to the native peptides and enhanced efficacy relative to similarly modified selective GLP-1 agonists. The pharmacokinetic enhancement lessened peak drug exposure and, in combination with less dependence on GLP-1-mediated pharmacology, avoided the adverse gastrointestinal effects that typify selective GLP-1-based agonists. This discovery and validation of a balanced and high-potency dual incretin agonist enables a more physiological approach to management of diseases associated with impaired glucose tolerance.

499 citations

Journal ArticleDOI
01 Oct 2009-Diabetes
TL;DR: Sustained GLP1R/GCGR dual agonism reverses obesity in DIO mice and is a novel therapeutic approach to the treatment of obesity.
Abstract: OBJECTIVE Oxyntomodulin (OXM) is a glucagon-like peptide 1 (GLP-1) receptor (GLP1R)/glucagon receptor (GCGR) dual agonist peptide that reduces body weight in obese subjects through increased energy expenditure and decreased energy intake. The metabolic effects of OXM have been attributed primarily to GLP1R agonism. We examined whether a long acting GLP1R/GCGR dual agonist peptide exerts metabolic effects in diet-induced obese mice that are distinct from those obtained with a GLP1R-selective agonist. RESEARCH DESIGN AND METHODS We developed a protease-resistant dual GLP1R/GCGR agonist, DualAG, and a corresponding GLP1R-selective agonist, GLPAG, matched for GLP1R agonist potency and pharmacokinetics. The metabolic effects of these two peptides with respect to weight loss, caloric reduction, glucose control, and lipid lowering, were compared upon chronic dosing in diet-induced obese (DIO) mice. Acute studies in DIO mice revealed metabolic pathways that were modulated independent of weight loss. Studies in Glp1r −/− and Gcgr −/− mice enabled delineation of the contribution of GLP1R versus GCGR activation to the pharmacology of DualAG. RESULTS Peptide DualAG exhibits superior weight loss, lipid-lowering activity, and antihyperglycemic efficacy comparable to GLPAG. Improvements in plasma metabolic parameters including insulin, leptin, and adiponectin were more pronounced upon chronic treatment with DualAG than with GLPAG. Dual receptor agonism also increased fatty acid oxidation and reduced hepatic steatosis in DIO mice. The antiobesity effects of DualAG require activation of both GLP1R and GCGR. CONCLUSIONS Sustained GLP1R/GCGR dual agonism reverses obesity in DIO mice and is a novel therapeutic approach to the treatment of obesity.

393 citations