scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Perbandingan Pola Distribusi Klorofil-A Data Insitu dan Citra Sentinel-3 Serta Keterkaitannya Dengan Kualitas Air di Perairan Muara Sungai Bodri, Kendal

TL;DR: In this article , the authors used a quantitative descriptive method to estimate the level of fertility of a waters using Sentinel 3 imagery, which showed that the concentration of chlorophyll-a was between 1.78 and 4.28 mg/m3.
Abstract: Peningkatan pemanfaatan lahan seperti pertanian, pertambakan, perikanan, pemukiman, dan industi terjadi di sepanjang sungai bodri. Peningkatan tersebut mempengaruhi tingkat kesuburan perairan. Tingkat kesuburan pada suatu perairan dapat dilihat dari konsentrasi klorofil-a. Pendugaan konsentrasi klorofil-a di perairan perlu menggunakan metode yang lebih efektif, salah satunya menggunakan citra Sentinel 3. Tujuan dari penelitian ini untuk mengetahui pola kesesuaian dan akurasi klorofil-a citra sentinel 3 dengan data insitu, serta keterkaitannya dengan kualitas air di perairan muara Sungai Bodri. Penelitian ini dilakukan dengan metode kuantitatif deskriptif. Hasil penelitian menunjukkan konsentrasi klorofil- a berkisar 1,78 mg/m3 – 4,28 mg/m3, dan hasil pengolahan data citra Sentinel 3 menghasilkan konsentrasi klorofil- a berkisar 1,85 mg/m3 – 5,3 mg/m3. Pola distribusi konsentrasi klorofil- a data insitu dan citra Sentinel 3 menunjukkan pola yang relatif sama, yaitu konsentrasi klorofi-a tertinggi di wilayah muara sungai Bodri dan semakin rendah ke arah laut. Konsentrasi klorofil-a citra lebih besar dibandingkan hasil insitu diduga dikarenakan penggunaan algoritma C2RCC yang sangat dipengaruhi oleh data dari simulasi reflektan pancaran air serta radian dari ToA, sehingga dengan kondisi perairan yang keruh, menyebabkan reflektan yang diterima sensor di artikan sebagai fitoplankton oleh algoritma C2RCC, dan menyebabkan tingginya konsentrasi klorofil-a yang didapat. Nilai korelasi konsentrasi klorofil-a insitu dan klorofil-a citra sebesar r = 0,935, menunjukkan bahwa korelasi tersebut memiliki hubungan yang sangat kuat. Hasil uji Root Mean Square Error (RMSE) menunjukkan data citra Sentinel 3 memiliki hasil yang akurat (RMSE = 0,566 mg/m3, R2 = 0.875 dan r = 0.935).Kata kunci : Klorofil- a, Sentinel 3, RMSE, Muara Sungai BodriAbstractIncreased land use such as agriculture, aquaculture, fisheries, settlements, and industry occurred along the Bodri River. This increase affects the level of water fertility. The level of fertility of a waters can be seen from the concentration of chlorophyll-a. Estimating the concentration of chlorophyll-a in waters needs to use a more effective method, one of which uses Sentinel 3 imagery. Bodri. This research uses a quantitative descriptive method. The results showed that the concentration of chlorophyll-a was between 1.78 mg/m3 – 4.28 mg/m3, and the results of image data processing Sentinel 3 produced chlorophyll- a concentrations ranging from 1.85 mg/m3 – 5.3 mg/ m3. The distribution pattern of chlorophyll- a concentration data in situ and Sentinel 3 image shows a relatively similar pattern, the highest chlorophyll-a concentration in the estuary area of the Bodri river and lower towards the sea. The concentration of chlorophyll-a in the image is greater than the in situ results, presumably due to the use of the C2RCC algorithm which is strongly influenced by the simulation data of the reflectance of water jets and radians from ToA, so that the water conditions are cloudy, the reflectance received by the sensor is interpreted as phytoplankton by the C2RCC algorithm, and resulted in the high concentration of chlorophyll-a obtained. The correlation value of in situ chlorophyll-a concentration and chlorophyll-a image is r = 0.935, indicating that the correlation has a very strong relationship. The results of the Root Mean Square Error (RMSE) test show that Sentinel 3 image data has accurate results (RMSE = 0.566 mg/m3, R2 = 0.875 and r = 0.935).Keywords : Chlorophyll- a, Sentinel 3, RMSE, Bodri River Estuary

Content maybe subject to copyright    Report

References
More filters
01 Jan 2016
TL;DR: Buku ini memberikan dasar-dasar teori and praktik untuk meningkatkan kemampuan meneliti di bidang pendidikan, kurikulum, and pembelajaran as mentioned in this paper.
Abstract: Buku ini memberikan dasar-dasar teori dan praktik untuk meningkatkan kemampuan meneliti di bidang pendidikan, kurikulum dan pembelajaran.

2,818 citations

01 Jan 2003
TL;DR: Buku ini membahas secara rinci dan holistik tentang parameter-parameter kualitas air, khususnya parameter fisika and kimia, sehingga diharapkan dapat membantu, memperkaya pengetahuan, and memperdalam pengertian tentang parameters kUALitas air.
Abstract: Buku ini membahas secara rinci dan holistik tentang parameter-parameter kualitas air, khususnya parameter fisika dan kimia, sehingga diharapkan dapat membantu, memperkaya pengetahuan, dan memperdalam pengertian tentang parameter kualitas air

903 citations

01 Aug 2016
TL;DR: The case 2 regional processor (C2RCC) as mentioned in this paper uses a large database of radiative transfer simulations inverted by neural networks as basic technology and has been amended by a set of additional neural networks performing specific tasks.
Abstract: Retrieval of water constituents, or its optical properties, requires inversion of the water leaving reflectance spectrum, measured at top of atmosphere by ocean colour satellites. The Case 2 Regional processor, originally developed by Doerffer and Schiller [6], uses a large database of radiative transfer simulations inverted by neural networks as basic technology. Through the CoastColour project major improvements were introduced. It has been amended by a set of additional neural networks performing specific tasks and special neural networks have been trained to cover extreme ranges of scattering and absorption. The processor has been renamed into C2RCC (Case 2 Regional CoastColour) and is applicable to all past and current ocean colour sensors as well as Sentinel 2. It has been validated in various studies and is available through ESA’s Sentinel toolbox SNAP. It is also used in the Sentinel 3 OLCI ground segment processor of ESA for the generation of the Case 2 water products, as well as in the processor for the upcoming MERIS 4 reprocessing.

140 citations