scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Performance analysis of IEEE 802.11 MAC protocols in wireless LANs

TL;DR: It is demonstrated that the exponential distribution is a good approximation model for the MAC layer service time for the queueing analysis, and the presented queueing models can accurately match the simulation data obtained from ns-2 when the arrival process at MAC layer is Poissonian.
Abstract: Summary IEEE 802.11 MAC protocol is the de facto standard for wireless local area networks (LANs), and has also been implemented in many network simulation packages for wireless multi-hop ad hoc networks. However, it is well known that, as the number of active stations increases, the performance of IEEE 802.11 MAC in terms of delay and throughput degrades dramatically, especially when each station’s load approaches its saturation state. To explore the inherent problems in this protocol, it is important to characterize the probability distribution of the packet service time at the MAC layer. In this paper, by modeling the exponential backoff process as a Markov chain, we can use the signal transfer function of the generalized state transition diagram to derive an approximate probability distribution of the MAC layer service time. We then present the discrete probability distribution for MAC layer packet service time, which is shown to accurately match the simulation data from network simulations. Based on the probability model for the MAC layer service time, we can analyze a few performance metrics of the wireless LAN and give better explanation to the performance degradation in delay and throughput at various traffic loads. Furthermore, we demonstrate that the exponential distribution is a good approximation model for the MAC layer service time for the queueing analysis, and the presented queueing models can accurately match the simulation data obtained from ns-2 when the arrival process at MAC layer is Poissonian. Copyright # 2004 John Wiley & Sons, Ltd.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 May 2013
TL;DR: In this paper, Flying Ad-Hoc Networks (FANETs) are surveyed which is an ad hoc network connecting the UAVs, and the main FANET design challenges are introduced.
Abstract: One of the most important design problems for multi-UAV (Unmanned Air Vehicle) systems is the communication which is crucial for cooperation and collaboration between the UAVs. If all UAVs are directly connected to an infrastructure, such as a ground base or a satellite, the communication between UAVs can be realized through the in-frastructure. However, this infrastructure based communication architecture restricts the capabilities of the multi-UAV systems. Ad-hoc networking between UAVs can solve the problems arising from a fully infrastructure based UAV networks. In this paper, Flying Ad-Hoc Networks (FANETs) are surveyed which is an ad hoc network connecting the UAVs. The differences between FANETs, MANETs (Mobile Ad-hoc Networks) and VANETs (Vehicle Ad-Hoc Networks) are clarified first, and then the main FANET design challenges are introduced. Along with the existing FANET protocols, open research issues are also discussed.

1,072 citations

Journal ArticleDOI
TL;DR: The simulation results show that by controlling the total traffic rate, the original 802.11 protocol can support strict QoS requirements, such as those required by voice over Internet protocol (VoIP) or streaming video, and at the same time achieve high channel utilization.
Abstract: This paper studies an important problem in the IEEE 802.11 distributed coordination function (DCF)-based wireless local area network (WLAN): how well can the network support quality of service (QoS). Specifically, this paper analyzes the network's performance in terms of maximum protocol capacity or throughput, delay, and packet loss rate. Although the performance of the 802.11 protocol, such as throughput or delay, has been extensively studied in the saturated case, it is demonstrated that maximum protocol capacity can only be achieved in the nonsaturated case and is almost independent of the number of active nodes. By analyzing packet delay, consisting of medium access control (MAC) service time and waiting time, accurate estimates were derived for delay and delay variation when the throughput increases from zero to the maximum value. Packet loss rate is also given for the nonsaturated case. Furthermore, it is shown that the channel busyness ratio provides precise and robust information about the current network status, which can be utilized to facilitate QoS provisioning. The authors have conducted a comprehensive simulation study to verify their analytical results and to tune the 802.11 to work at the optimal point with maximum throughput and low delay and packet loss rate. The simulation results show that by controlling the total traffic rate, the original 802.11 protocol can support strict QoS requirements, such as those required by voice over Internet protocol (VoIP) or streaming video, and at the same time achieve high channel utilization.

278 citations

Proceedings ArticleDOI
17 Nov 2009
TL;DR: A generalized analysis of the IEEE 802.15.4 medium access control (MAC) protocol in terms of reliability, delay and energy consumption gives more accurate results than existing methods in the literature and Monte Carlo simulations confirm that the proposed approximations offer a satisfactory accuracy.
Abstract: A generalized analysis of the IEEE 802.15.4 medium access control (MAC) protocol in terms of reliability, delay and energy consumption is presented. The IEEE 802.15.4 exponential backoff process is modeled through a Markov chain taking into account retry limits, acknowledgements, and unsaturated traffic. Simple and effective approximations of the reliability, delay and energy consumption under low traffic regime are proposed. It is demonstrated that the delay distribution of IEEE 802.15.4 depends mainly on MAC parameters and collision probability. In addition, the impact of MAC parameters on the performance metrics is analyzed. The analysis is more general and gives more accurate results than existing methods in the literature. Monte Carlo simulations confirm that the proposed approximations offer a satisfactory accuracy.

246 citations

Proceedings ArticleDOI
23 Apr 2006
TL;DR: This paper investigates the impacts of variable transmission ranges and receiver sensitivities for different channel rates and the impact of multihop forwarding as well as several other important factors, such as SINR, node topology, hidden/exposed terminal problems and bidirectional handshakes, on determining the optimum carrier sensing range to maximize the throughput.
Abstract: Physical carrier sensing is an effective mechanism of medium access control (MAC) protocols to reduce collisions in wireless networks, and the size of the carrier sensing range has a great impact on the system performance. Previous studies have shown that the MAC layer overhead plays an important role in determining the optimal carrier sensing range. However, variable transmission ranges and receiver sensitivities for different channel rates and the impact of multihop forwarding have been ignored. In this paper, we investigate the impacts of these factors as well as several other important factors, such as SINR (signal to interference plus noise ratio), node topology, hidden/exposed terminal problems and bidirectional handshakes, on determining the optimum carrier sensing range to maximize the throughput through both analysis and simulations. The results show that if any one of these factors is not addressed properly, the system performance may suffer a significant degradation. Furthermore, considering both multirate capability and carrier sensing ranges, we propose to use bandwidth distance product as a routing metric, which improves end-to-end throughput by up to 27% in the simulated scenario.

238 citations

Journal ArticleDOI
TL;DR: A unified analytical model is developed and it is proved that the binary exponential backoff mechanism induces a heavy-tailed delay distribution for the case of unlimited retransmissions and suggests that DCF is prone to long delays and not suited to carrying delay-sensitive applications.
Abstract: The MAC access delay in a saturated IEEE 802.11 DCF wireless LAN is analyzed. We develop a unified analytical model and obtain explicit expressions for the first two moments as well as the generating function. We show via comparison with simulation that our model accurately predicts the mean, standard deviation, and distribution of the access delay for a wide range of operating conditions. In addition, we show that the obtained generating function is much more accurate than others that have appeared in the literature. Using our model, we prove that the binary exponential backoff mechanism induces a heavy-tailed delay distribution for the case of unlimited retransmissions. We show using numerical examples that the distribution has a truncated power-law tail when a retransmission limit exists. This finding suggests that DCF is prone to long delays and not suited to carrying delay-sensitive applications

197 citations


Cites background or methods or result from "Performance analysis of IEEE 802.11..."

  • ...In Section V, we compare the accuracy of (23) with that of the solutions in [5] and [3]....

    [...]

  • ...In contrast, inverting the generating functions derived by Tickoo and Sikdar [5], and Zhai, Kwon and Fang [3] leads to distribution results which are far from the simulation curves....

    [...]

  • ...Our formulae for the mean, standard deviation and generating function are much more accurate than others that have appeared in the literature [2], [5], [3]....

    [...]

  • ...In principle, it should be possible to obtain all moments of the access delay by repeated differentiation of the generating function followed by appropriate limit taking, which is the approach suggested in [5] and [3]....

    [...]

  • ...The latter difference results because the authors of [3] make no allowance for the reduced contention effect....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple but nevertheless extremely accurate, analytical model to compute the 802.11 DCF throughput, in the assumption of finite number of terminals and ideal channel conditions, is presented.
Abstract: The IEEE has standardized the 802.11 protocol for wireless local area networks. The primary medium access control (MAC) technique of 802.11 is called the distributed coordination function (DCF). The DCF is a carrier sense multiple access with collision avoidance (CSMA/CA) scheme with binary slotted exponential backoff. This paper provides a simple, but nevertheless extremely accurate, analytical model to compute the 802.11 DCF throughput, in the assumption of finite number of terminals and ideal channel conditions. The proposed analysis applies to both the packet transmission schemes employed by DCF, namely, the basic access and the RTS/CTS access mechanisms. In addition, it also applies to a combination of the two schemes, in which packets longer than a given threshold are transmitted according to the RTS/CTS mechanism. By means of the proposed model, we provide an extensive throughput performance evaluation of both access mechanisms of the 802.11 protocol.

8,072 citations

Proceedings ArticleDOI
25 Oct 1998
TL;DR: The results of a derailed packet-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocols, which cover a range of designchoices: DSDV,TORA, DSR and AODV are presented.
Abstract: An ad hoc networkis a collwtion of wirelessmobilenodes dynamically forminga temporarynetworkwithouttheuseof anyexistingnetworkirrfrastructureor centralizedadministration.Dueto the limitedtransmissionrange of ~vlrelessnenvorkinterfaces,multiplenetwork“hops”maybe neededfor onenodeto exchangedata ivithanotheracrox thenetwork.Inrecentyears, a ttiery of nelvroutingprotocols~geted specificallyat this environment havebeen developed.but little pcrfomrartwinformationon mch protocol and no ralistic performancecomparisonbehvwrrthem ISavailable. ~Is paper presentsthe results of a derailedpacket-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocolsthatcovera range of designchoices: DSDV,TORA, DSR and AODV. \Vehave extended the /~r-2networksimulatorto accuratelymodelthe MACandphysical-layer behaviorof the IEEE 802.1I wirelessLANstandard,includinga realistic wtrelesstransmissionchannelmodel, and present the resultsof simulations of net(vorksof 50 mobilenodes.

5,147 citations


"Performance analysis of IEEE 802.11..." refers background in this paper

  • ...The routing simulations [ 1 ,2] over mobile ad hoc networks indicate that network capacity is poorly utilized in terms of throughput and packet delay when the IEEE 802.11 MAC protocol is integrated with routing algorithms....

    [...]

Book
01 Jan 1974
TL;DR: The Fundamentals of Queueing Theory, Fourth Edition as discussed by the authors provides a comprehensive overview of simple and more advanced queuing models, with a self-contained presentation of key concepts and formulae.
Abstract: Praise for the Third Edition: "This is one of the best books available. Its excellent organizational structure allows quick reference to specific models and its clear presentation . . . solidifies the understanding of the concepts being presented."IIE Transactions on Operations EngineeringThoroughly revised and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fourth Edition continues to present the basic statistical principles that are necessary to analyze the probabilistic nature of queues. Rather than presenting a narrow focus on the subject, this update illustrates the wide-reaching, fundamental concepts in queueing theory and its applications to diverse areas such as computer science, engineering, business, and operations research.This update takes a numerical approach to understanding and making probable estimations relating to queues, with a comprehensive outline of simple and more advanced queueing models. Newly featured topics of the Fourth Edition include:Retrial queuesApproximations for queueing networksNumerical inversion of transformsDetermining the appropriate number of servers to balance quality and cost of serviceEach chapter provides a self-contained presentation of key concepts and formulae, allowing readers to work with each section independently, while a summary table at the end of the book outlines the types of queues that have been discussed and their results. In addition, two new appendices have been added, discussing transforms and generating functions as well as the fundamentals of differential and difference equations. New examples are now included along with problems that incorporate QtsPlus software, which is freely available via the book's related Web site.With its accessible style and wealth of real-world examples, Fundamentals of Queueing Theory, Fourth Edition is an ideal book for courses on queueing theory at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners who analyze congestion in the fields of telecommunications, transportation, aviation, and management science.

3,059 citations

Proceedings ArticleDOI
26 Mar 2000
TL;DR: It is demonstrated that even though DSR and AODV share a similar on-demand behavior the differences in the protocol mechanics can lead to significant performance differentials.
Abstract: Ad hoc networks are characterized by multi-hop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of two prominent on-demand routing protocols for mobile ad hoc networks - dynamic source routing (DSR) and ad hoc on-demand distance vector routing (AODV). A detailed simulation model with MAC and physical layer models is used to study inter-layer interactions and their performance implications. We demonstrate that even though DSR and AODV share a similar on-demand behavior the differences in the protocol mechanics can lead to significant performance differentials. The performance differentials are analyzed using varying network load, mobility and network size. Based on the observations, we make recommendations about how the performance of either protocol can be improved.

1,629 citations


"Performance analysis of IEEE 802.11..." refers background in this paper

  • ...The routing simulations [1,2] over mobile ad hoc networks indicate that network capacity is poorly utilized in terms of throughput and packet delay when the IEEE 802....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated that even though DSR and AODV share similar on-demand behavior, the differences in the protocol mechanics can lead to significant performance differentials.
Abstract: Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of two prominent on-demand routing protocols for mobile ad hoc networks: dynamic source routing (DSR) and ad hoc on-demand distance vector routing (AODV). A detailed simulation model with MAC and physical layer models is used to study interlayer interactions and their performance implications. We demonstrate that even though DSR and AODV share similar on-demand behavior, the differences in the protocol mechanics can lead to significant performance differentials. The performance differentials are analyzed using varying network load, mobility, and network size. Based on the observations, we make recommendations about how the performance of either protocol can be improved.

1,470 citations