scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Performance Evaluation of LTE and Wi-Fi Coexistence in Unlicensed Bands

TL;DR: A simulator-based system- level analysis in order to assess the network performance in an office scenario shows that LTE system performance is slightly affected by coexistence whereas Wi-Fi is significantly impacted by LTE transmissions.
Abstract: The deployment of modern mobile systems has faced severe challenges due to the current spectrum scarcity. The situation has been further worsened by the development of different wireless technologies and standards that can be used in the same frequency band. Furthermore, the usage of smaller cells (e.g. pico, femto and wireless LAN), coexistence among heterogeneous networks (including amongst different wireless technologies such as LTE and Wi-Fi deployed in the same frequency band) has been a big field of research in the academy and industry. In this paper, we provide a performance evaluation of coexistence between LTE and Wi-Fi systems and show some of the challenges faced by the different technologies. We focus on a simulator-based system- level analysis in order to assess the network performance in an office scenario. Simulation results show that LTE system performance is slightly affected by coexistence whereas Wi-Fi is significantly impacted by LTE transmissions. In coexistence, the Wi-Fi channel is most often blocked by LTE interference, making the Wi-Fi nodes to stay on the LISTEN mode more than 96% of the time. This reflects directly on the Wi-Fi user throughput, that decreases from 70% to ≈100% depending on the scenario. Finally, some of the main issues that limit the LTE/Wi-Fi coexistence and some pointers on the mutual interference management of both the systems are provided.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the locations for the Wi-Fi access points (APs) and LTE eNodeBs (eNBs) are modeled as two independent homogeneous Poisson point processes.
Abstract: We leverage stochastic geometry to characterize key performance metrics for neighboring Wi-Fi and LTE networks in unlicensed spectrum. Our analysis focuses on a single unlicensed frequency band, where the locations for the Wi-Fi access points (APs) and LTE eNodeBs (eNBs) are modeled as two independent homogeneous Poisson point processes. Three LTE coexistence mechanisms are investigated: (1) LTE with continuous transmission and no protocol modifications; (2) LTE with discontinuous transmission; and (3) LTE with listen-before-talk (LBT) and random back-off (BO). For each scenario, we have derived the medium access probability (MAP), the signal-to-interference-plus-noise ratio (SINR) coverage probability, the density of successful transmissions (DST), and the rate coverage probability for both Wi-Fi and LTE. Compared to the baseline scenario where one Wi-Fi network coexists with an additional Wi-Fi network, our results show that Wi-Fi performance is severely degraded when LTE transmits continuously. However, LTE is able to improve the DST and rate coverage probability of Wi-Fi while maintaining acceptable data rate performance when it adopts one or more of the following coexistence features: a shorter transmission duty cycle, lower channel access priority, or more sensitive clear channel assessment (CCA) thresholds.

21 citations

Journal ArticleDOI
TL;DR: The ORCHESTRA framework is the first of its kind in providing a fine-grained packet-level control across different technologies by introducing a fully transparent virtual medium access control layer and an software-defined networking-like controller with global intelligence.
Abstract: Modern connected devices are equipped with the ability to connect to the Internet using a variety of different wireless network technologies. Current network management solutions fail to provide a fine-grained, coordinated, and transparent answer to this heterogeneity, while the lower layers of the OSI stack simply ignore it by providing full separation of layers. To address this, we propose the ORCHESTRA framework to manage the different devices in heterogeneous wireless networks and introduce capabilities such as packet-level dynamic and intelligent handovers (both inter- and intra-technology), load balancing, replication, and scheduling. The framework is the first of its kind in providing a fine-grained packet-level control across different technologies by introducing a fully transparent virtual medium access control layer and an software-defined networking-like controller with global intelligence. Furthermore, we present a novel optimization problem formulation that can be solved to optimally configure the network. We provide a thorough evaluation through simulations and a prototype implementation. We show that our framework enables, in a real-life setting, transparent and real-time inter-technology handovers and that coordinated load balancing can double the network-wide throughput across different scenarios.

19 citations


Cites background from "Performance Evaluation of LTE and W..."

  • ...In the first case, LTE technology is directly used in the unlicensed spectrum (especially the 5 GHz band), likely causing severe performance degradation for existing Wi-Fi systems [14], [15]....

    [...]

Proceedings ArticleDOI
27 Mar 2017
TL;DR: An LBT mechanism is proposed which attempts to share the medium in a fair manner and improves the WiFi as well as combined (WiFi-LAA) system performance significantly and overall system gain can be achieved.
Abstract: Licensed Assisted Access (LAA) has been proposedby 3rd Generation Partnership Project (3GPP) in order touse Long Term Evolution (LTE) in the un-licensed band. Asthe centralized control of LAA has to co-exist with existingdistributed Wireless Fidelity (WiFi), efficient Listen Before Talk(LBT) technique is required to reduce interference and improvespectral efficiency. In this paper, we have proposed an LBTmechanism which attempts to share the medium in a fair mannerand improves the WiFi as well as combined (WiFi-LAA) systemperformances significantly. We have analyzed for enhanced Dis-tributed Coordination Function (DCF) model for LAA. We havealso observed network performance of the proposed LBT modelfor WiFi-LAA co-existence in the un-licensed spectrum usingNetwork Simulator (NS-3). The simulation based observationsare very much similar to that of the Matlab based analyticalresults. Also, observed results indicate that with proper choiceof LAA channel occupancy and back-off counter, WiFi as wellas overall system gain can be achieved.

19 citations

Journal ArticleDOI
TL;DR: A self-organized optimization framework for the allocation of sub-channels and power levels by exploiting a non-cooperative game with the objective to maximize the energy efficiency of dual-access small cells without creating harmful impact on coexisting network entities.
Abstract: In this study, an energy-efficient self-organized framework for sub-channel allocation and power allocation is presented for ultra-dense small cell networks, which can operate in both licensed and unlicensed bands. In order to protect legacy WiFi devices (operating in unlicensed bands), we consider the Long-Term Evolution (LTE) operation in unlicensed bands based on Carrier Sense Adaptive Transmission (CSAT), in which ’ON’ and ’OFF’ duty cycle approach is utilized. On the other hand, there are severe interference management problems among small cells (operating in licensed and unlicensed bands) and between macro cells and small cells (operating in licensed bands) due to co-channel and ultra-dense deployment of small cells. This article proposes a self-organized optimization framework for the allocation of sub-channels and power levels by exploiting a non-cooperative game with the objective to maximize the energy efficiency of dual-access small cells without creating harmful impact on coexisting network entities including macro cell users, small cell users, and legacy WiFi devices. Simulation results show that the proposed scheme outperforms (6 and 11 percent) and (8 and 18 percent) the round-robin and the spectrum-efficient schemes, respectively, for two different small cell scenarios. In addition, it is shown that for less channel state information (CSI) estimation errors $\varsigma = 0.02$ ς = 0 . 02 , the maximum performance degradation of the proposed scheme is reasonably small (5.5 percent) as compared to the perfect CSI.

19 citations


Cites background from "Performance Evaluation of LTE and W..."

  • ...Even though due to the adoption of CSAT in LTE, its 108 operation can degrade the WiFi performance [18]....

    [...]

Journal ArticleDOI
TL;DR: This survey addresses spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects, and systematically explores the spectrum sharing design space consisting of parameters at different layers.
Abstract: Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions.

19 citations


Cites background from "Performance Evaluation of LTE and W..."

  • ...A number of papers addressed Wi-Fi/LTE coexistence in TVWS [77]–[80]....

    [...]

  • ...3) TVWS: The authors in [75], [76] addressed coexistence between IEEE 802.11af and IEEE 802.22 in TVWS....

    [...]

  • ...We note that the overall results reported for Wi-Fi/LTE coexistence in TVWS are consistent with those for Wi-Fi/LTE coexistence in the 5 GHz unlicensed band in Section V-B....

    [...]

  • ...Such bands are the 3.5 GHz CBRS band in the U.S., the 2.3-2.4 GHz LSA band in Europe, 5 GHz radar bands, the 5.9 GHz DSRC band, and TVWS. Spectrum sharing for primary/secondary coexistence was implemented either in a centralized manner via databases, or via distributed sensing mechanisms....

    [...]

  • ...For instance, changes in spectrum regulations were required for TVWS before secondary technologies could share underutilized spectrum with TV services....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: An overview of the techniques being considered for LTE Release 10 (aka LTEAdvanced) is discussed, which includes bandwidth extension via carrier aggregation to support deployment bandwidths up to 100 MHz, downlink spatial multiplexing including single-cell multi-user multiple-input multiple-output transmission and coordinated multi point transmission, and heterogeneous networks with emphasis on Type 1 and Type 2 relays.
Abstract: LTE Release 8 is one of the primary broadband technologies based on OFDM, which is currently being commercialized. LTE Release 8, which is mainly deployed in a macro/microcell layout, provides improved system capacity and coverage, high peak data rates, low latency, reduced operating costs, multi-antenna support, flexible bandwidth operation and seamless integration with existing systems. LTE-Advanced (also known as LTE Release 10) significantly enhances the existing LTE Release 8 and supports much higher peak rates, higher throughput and coverage, and lower latencies, resulting in a better user experience. Additionally, LTE Release 10 will support heterogeneous deployments where low-power nodes comprising picocells, femtocells, relays, remote radio heads, and so on are placed in a macrocell layout. The LTE-Advanced features enable one to meet or exceed IMT-Advanced requirements. It may also be noted that LTE Release 9 provides some minor enhancement to LTE Release 8 with respect to the air interface, and includes features like dual-layer beamforming and time-difference- of-arrival-based location techniques. In this article an overview of the techniques being considered for LTE Release 10 (aka LTEAdvanced) is discussed. This includes bandwidth extension via carrier aggregation to support deployment bandwidths up to 100 MHz, downlink spatial multiplexing including single-cell multi-user multiple-input multiple-output transmission and coordinated multi point transmission, uplink spatial multiplexing including extension to four-layer MIMO, and heterogeneous networks with emphasis on Type 1 and Type 2 relays. Finally, the performance of LTEAdvanced using IMT-A scenarios is presented and compared against IMT-A targets for full buffer and bursty traffic model.

1,044 citations


"Performance Evaluation of LTE and W..." refers background in this paper

  • ...4GHz band has already been established [7], and the recent inclusion of features on LTE standard [12] are promoting its usage on pico and femto cells, it is possible that in the near future coexistence between LTE (-ADV) and Wi-Fi will become important....

    [...]

Journal ArticleDOI
TL;DR: Concepts underlying the "property" and "commons" debate are presented, options for spectrum reform are clarified, and the trade-offs of spectrum sharing are described.
Abstract: Many complain about severe spectrum shortage. The shortage comes from outdated spectrum policies that allows for little sharing. Regulators have granted licenses that offer exclusive access to the spectrum. When these licensees are not transmitting, the spectrum sits idle. A new technology regarding spectrum shortage enables more spectrum sharing that unleashes innovative products and services, provided that we adopt the appropriate spectrum policies. Two camps are pushing for extreme reform, one for "property rights" and the other for "spectrum commons". This article presents concepts underlying the "property" and "commons" debate, clarifies options for spectrum reform, and describes the trade-offs of spectrum sharing

592 citations


"Performance Evaluation of LTE and W..." refers background in this paper

  • ...One of the most promising techniques for dealing with the lack of available spectrum is the concept of spectrum sharing [1] ....

    [...]

Proceedings ArticleDOI
22 Apr 2007
TL;DR: An adjusted Shannon capacity formula is introduced, where it is shown that the bandwidth efficiency can be calculated based on system parameters, while the SNR efficiency is extracted from detailed link level studies.
Abstract: In this paper we propose a modification to Shannon capacity bound in order to facilitate accurate benchmarking of UTRAN long term evolution (LTE). The method is generally applicable to wireless communication systems, while we have used LTE air-interface technology as a case study. We introduce an adjusted Shannon capacity formula, where we take into account the system bandwidth efficiency and the SNR efficiency of LTE. Separating these issues, allows for simplified parameter extraction. We show that the bandwidth efficiency can be calculated based on system parameters, while the SNR efficiency is extracted from detailed link level studies including advanced features of MIMO and frequency domain packet scheduling (FDPS). We then use the adjusted Shannon capacity formula combined with G-factor distributions for macro and micro cell scenarios to predict LTE cell spectral efficiency (SE). Such LTE SE predictions are compared to LTE cell SE results generated by system level simulations. The results show an excellent match of less that 5-10% deviation.

580 citations


"Performance Evaluation of LTE and W..." refers methods in this paper

  • ...For physical layer (PHY) abstraction, Shannon-fitting [14] is employed to predict the PHY performance at the system-level....

    [...]

Proceedings ArticleDOI
09 Jun 2013
TL;DR: This paper considers two of the most prominent wireless technologies available today, namely Long Term Evolution (LTE), and WiFi, and addresses some problems that arise from their coexistence in the same band, and proposes a simple coexistence scheme that reuses the concept of almost blank subframes in LTE.
Abstract: The recent development of regulatory policies that permit the use of TV bands spectrum on a secondary basis has motivated discussion about coexistence of primary (e.g. TV broadcasts) and secondary users (e.g. WiFi users in TV spectrum). However, much less attention has been given to coexistence of different secondary wireless technologies in the TV white spaces. Lack of coordination between secondary networks may create severe interference situations, resulting in less efficient usage of the spectrum. In this paper, we consider two of the most prominent wireless technologies available today, namely Long Term Evolution (LTE), and WiFi, and address some problems that arise from their coexistence in the same band. We perform exhaustive system simulations and observe that WiFi is hampered much more significantly than LTE in coexistence scenarios. A simple coexistence scheme that reuses the concept of almost blank subframes in LTE is proposed, and it is observed that it can improve the WiFi throughput per user up to 50 times in the studied scenarios.

324 citations


"Performance Evaluation of LTE and W..." refers background in this paper

  • ...This kind of approach has started to be investigated in [16], where LTE/Wi-Fi coexistence is enabled by LTE blank subframe allocation....

    [...]

Proceedings ArticleDOI
27 Aug 2007
TL;DR: A channel hopping design is prototype using PRISM NICs, and it is found that it can sustain throughput at levels of RF interference well above that needed to disrupt unmodified links, and at a reasonable cost in terms of switching overheads.
Abstract: We study the impact on 802.11 networks of RF interference from devices such as Zigbee and cordless phones that increasingly crowd the 2.4GHz ISM band, and from devices such as wireless camera jammers and non-compliant 802.11 devices that seek to disrupt 802.11 operation. Our experiments show that commodity 802.11 equipment is surprisingly vulnerable to certain patterns of weak or narrow-band interference. This enables us to disrupt a link with an interfering signal whose power is 1000 times weaker than the victim's 802.11 signals, or to shut down a multiple AP, multiple channel managed network at a location with a single radio interferer. We identify several factors that lead to these vulnerabilities, ranging from MAC layer driver implementation strategies to PHY layer radio frequency implementation strategies. Our results further show that these factors are not overcome by simply changing 802.11 operational parameters (such as CCA threshold, rate and packet size) with the exception of frequency shifts. This leads us to explore rapid channel hopping as a strategy to withstand RF interference. We prototype a channel hopping design using PRISM NICs, and find that it can sustain throughput at levels of RF interference well above that needed to disrupt unmodified links, and at a reasonable cost in terms of switching overheads.

300 citations


"Performance Evaluation of LTE and W..." refers background in this paper

  • ...However, it is observed that the coexistence of heterogeneous systems in the same frequency bands causes a meaningful degradation on the system performance (e.g., Wi-Fi and Bluetooth [3], Wi-Fi and ZigBee [4], Wi-Fi and WiMAX [5])....

    [...]

  • ..., Wi-Fi and Bluetooth [3], Wi-Fi and ZigBee [4], Wi-Fi and WiMAX [5])....

    [...]

Trending Questions (1)
What is the difference between LTE Home Internet and FIOS?

Simulation results show that LTE system performance is slightly affected by coexistence whereas Wi-Fi is significantly impacted by LTE transmissions.