scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Performance Evaluation of LTE and Wi-Fi Coexistence in Unlicensed Bands

TL;DR: A simulator-based system- level analysis in order to assess the network performance in an office scenario shows that LTE system performance is slightly affected by coexistence whereas Wi-Fi is significantly impacted by LTE transmissions.
Abstract: The deployment of modern mobile systems has faced severe challenges due to the current spectrum scarcity. The situation has been further worsened by the development of different wireless technologies and standards that can be used in the same frequency band. Furthermore, the usage of smaller cells (e.g. pico, femto and wireless LAN), coexistence among heterogeneous networks (including amongst different wireless technologies such as LTE and Wi-Fi deployed in the same frequency band) has been a big field of research in the academy and industry. In this paper, we provide a performance evaluation of coexistence between LTE and Wi-Fi systems and show some of the challenges faced by the different technologies. We focus on a simulator-based system- level analysis in order to assess the network performance in an office scenario. Simulation results show that LTE system performance is slightly affected by coexistence whereas Wi-Fi is significantly impacted by LTE transmissions. In coexistence, the Wi-Fi channel is most often blocked by LTE interference, making the Wi-Fi nodes to stay on the LISTEN mode more than 96% of the time. This reflects directly on the Wi-Fi user throughput, that decreases from 70% to ≈100% depending on the scenario. Finally, some of the main issues that limit the LTE/Wi-Fi coexistence and some pointers on the mutual interference management of both the systems are provided.
Citations
More filters
Posted Content
TL;DR: In this article, a Network Feature Relationship based Optimization (NeFRO) framework is proposed to improve upon the conventional optimization formulations by utilizing the feature-relationship equations learned from network data.
Abstract: Unlicensed LTE-WiFi coexistence networks are undergoing consistent densification to meet the rising mobile data demands. With the increase in coexistence network complexity, it is important to study network feature relationships (NFRs) and utilize them to optimize dense coexistence network performance. This work studies NFRs in unlicensed LTE-WiFi (LTE-U and LTE-LAA) networks through supervised learning of network data collected from real-world experiments. Different 802.11 standards and varying channel bandwidths are considered in the experiments and the learning model selection policy is precisely outlined. Thereafter, a comparative analysis of different LTE-WiFi network configurations is performed through learning model parameters such as R-sq, residual error, outliers, choice of predictor, etc. Further, a Network Feature Relationship based Optimization (NeFRO) framework is proposed. NeFRO improves upon the conventional optimization formulations by utilizing the feature-relationship equations learned from network data. It is demonstrated to be highly suitable for time-critical dense coexistence networks through two optimization objectives, viz., network capacity and signal strength. NeFRO is validated against four recent works on network optimization. NeFRO is successfully able to reduce optimization convergence time by as much as 24% while maintaining accuracy as high as 97.16%, on average.

3 citations

Journal ArticleDOI
TL;DR: An analytical model is developed to measure the performance of LAA and WiFi coexistence in unlicensed spectrum and a coexistence method named Carrier Aggregation with Transmit Power Control (CATPC) which dynamically adjusts the LAA transmit power is proposed to reduce the interference to WiFi.
Abstract: To meet the ever increasing data rate demand in cellular network, the 3rd Generation Partnership Project (3GPP) introduced Licensed Assisted Access (LAA) with Listen Before Talk (LBT) mechanism to utilize the unlicensed spectrum to supplement the licensed LTE users. However, this leads to interference to already incumbent technologies in unlicensed spectrum such as WiFi. Furthermore, multi-carrier aggregation has been proposed to further increase the capacity in unlicensed spectrum. As WiFi primarily works on the principle of energy detection in the channel, in this paper, we first develop an analytical model to measure the performance of LAA and WiFi coexistence in unlicensed spectrum which supports multi-carrier aggregation which employs SINR based collision that allows the possibility of concurrent transmissions. Further, to reduce the interference to WiFi, we propose a coexistence method named Carrier Aggregation with Transmit Power Control (CATPC) which dynamically adjusts the LAA transmit power. CATPC provides a better opportunity for WiFi devices, better channel utilization, and energy efficient transmission by LAA. Through extensive simulations we demonstrate the effectiveness of CATPC when compared to other coexistence methods proposed in the literature.

3 citations

Dissertation
29 Nov 2018
TL;DR: A novel selforganizing and AI-inspired algorithms for optimizing the available radio resources in next-generation wireless cellular networks are proposed and an optimization formulation for LTE-LAA holistic traffic balancing across the licensed and unlicensed bands is proposed.
Abstract: Next-generation wireless cellular networks are morphing into a massive Internet of Things (IoT) environment that integrates a heterogeneous mix of wirelessenabled devices such as unmanned aerial vehicles (UAVs) and connected vehicles. This unprecedented transformation will not only drive an exponential growth in wireless traffic, but it will also lead to the emergence of new wireless service applications that substantially differ from conventional multimedia services. To realize the fifth generation (5G) mobile networks vision, a new wireless radio technology paradigm shift is required in order to meet the quality of service requirements of these new emerging use cases. In this respect, one of the major components of 5G is self-organized networks. In essence, future cellular networks will have to rely on an autonomous and self-organized behavior in order to manage the large scale of wireless-enabled devices. Such an autonomous capability can be realized by integrating fundamental notions of artificial intelligence (AI) across various network devices. In this regard, the main objective of this thesis is to propose novel selforganizing and AI-inspired algorithms for optimizing the available radio resources in next-generation wireless cellular networks. First, heterogeneous networks that encompass licensed and unlicensed spectrum are studied. In this context, a deep reinforcement learning (RL) framework based on long short-term memory cells is introduced. The proposed scheme aims at proactively allocating the licensed assisted access LTE (LTE-LAA) radio resources over the unlicensed spectrum while ensuring an efficient coexistence with WiFi. The proposed deep learning algorithm is shown to reach a mixed-strategy Nash equilibrium, when it converges. Simulation results using real data traces show that the proposed scheme can yield up to 28% and 11% gains over a conventional reactive approach and a proportional fair coexistence mechanism, respectively. In terms of priority fairness, results show that an efficient utilization of the unlicensed spectrum is guaranteed when both technologies, LTE-LAA and WiFi, are given equal weighted priorities for transmission on the unlicensed spectrum. Furthermore, an optimization formulation for LTE-LAA holistic traffic balancing across the licensed and the unlicensed bands is proposed. A closed form solution for the aforementioned optimization problem is derived. An attractive aspect of the derived solution is that it can be applied online by each LTE-LAA small base station (SBS), adapting its trans-

3 citations


Cites background from "Performance Evaluation of LTE and W..."

  • ...For instance, preliminary results show that WAP throughput could drop by 70% and even 100%, depending on the scenario, if mutual interference is not mitigated [61]....

    [...]

Posted Content
TL;DR: In this article, the authors propose a scheme that allows the spectrum manager managing the shared bands to estimate the duty cycle of a target LTE-U cell based on PHY layer observations from a nearby Wi-Fi AP, without interrupting normal WiFi operations.
Abstract: Coexistence of Wi-Fi and LTE Unlicensed (LTE-U) in shared or unlicensed bands has drawn growing attention from both academia and industry. An important consideration is fairness between Wi-Fi and duty cycled LTE-U, which is often defined in terms of channel access time, as adopted by the LTE-U Forum. Despite many studies on duty cycle adaptation design for fair sharing, one crucial fact has often been neglected: LTE-U systems unilaterally control LTE-U duty cycles; hence, as self- interested users, they have incentives to misbehave, e.g., transmitting with a larger duty cycle that exceeds a given limit, so as to gain a greater share in channel access time and throughput. In this paper, we propose a scheme that allows the spectrum manager managing the shared bands to estimate the duty cycle of a target LTE-U cell based on PHY layer observations from a nearby Wi-Fi AP, without interrupting normal Wi-Fi operations. We further propose a thresholding scheme to detect duty cycling misbehavior (i.e., determining if the duty cycle exceeds the assigned limit), and analyze its performance in terms of detection and false alarm probabilities. The proposed schemes are implemented in ns3 and evaluated with extensive simulations. Our results show that the proposed scheme provides an estimate within +/- 1% of the true duty cycle, and detects misbehavior with a duty cycle 2.8% higher than the limit with a detection probability of at least 95%, while keeping the false alarm probability less than or equal to 1%.

3 citations

Proceedings ArticleDOI
01 Nov 2019
TL;DR: The results obtained from this work demonstrate that the IEEE Wireless N / AC standards can be applied for the implementation of this type of backhaul transport network, and it is considered that they allow to achieve greater coverage and efficiency in the provision of the service to the inhabitants of the sector.
Abstract: The technical factors are important when establishing a data transport route. This work analyzes and determines those technical factors that condition the implementation of a backhaul transport network in wireless ISP in a 5GHz band that is not licensed. The problem of limited coverage is analyzed, for Internet access, in the Los Tubos population sector, peripheral area of the Duran canton, in Ecuador; in addition, social factors that affect the study are taken into consideration. Based on this background, an analytical-descriptive study is carried out through the gathering of information in situ, which includes the execution of measurements based on technical standards for the environment, the application of a directed survey, to the inhabitants of the Los Tubos sector, to determine the incident social factors, in addition the technique of in-depth interviews with representatives of Internet provider companies operating in the Duran canton is used, to establish the feasibility of the proposal. The results obtained from this work demonstrate that the IEEE Wireless N / AC standards can be applied for the implementation of this type of backhaul transport network, and it is considered that they allow to achieve greater coverage and efficiency in the provision of the service to the inhabitants of the sector.

3 citations


Additional excerpts

  • ...Por lo tanto, como se evidencia entre los trabajos con temática similar elaborados por otros autores en el Ecuador [5], [6], [7] y otros de índole externo al país, se busca realizar un...

    [...]

  • ...[7] A....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: An overview of the techniques being considered for LTE Release 10 (aka LTEAdvanced) is discussed, which includes bandwidth extension via carrier aggregation to support deployment bandwidths up to 100 MHz, downlink spatial multiplexing including single-cell multi-user multiple-input multiple-output transmission and coordinated multi point transmission, and heterogeneous networks with emphasis on Type 1 and Type 2 relays.
Abstract: LTE Release 8 is one of the primary broadband technologies based on OFDM, which is currently being commercialized. LTE Release 8, which is mainly deployed in a macro/microcell layout, provides improved system capacity and coverage, high peak data rates, low latency, reduced operating costs, multi-antenna support, flexible bandwidth operation and seamless integration with existing systems. LTE-Advanced (also known as LTE Release 10) significantly enhances the existing LTE Release 8 and supports much higher peak rates, higher throughput and coverage, and lower latencies, resulting in a better user experience. Additionally, LTE Release 10 will support heterogeneous deployments where low-power nodes comprising picocells, femtocells, relays, remote radio heads, and so on are placed in a macrocell layout. The LTE-Advanced features enable one to meet or exceed IMT-Advanced requirements. It may also be noted that LTE Release 9 provides some minor enhancement to LTE Release 8 with respect to the air interface, and includes features like dual-layer beamforming and time-difference- of-arrival-based location techniques. In this article an overview of the techniques being considered for LTE Release 10 (aka LTEAdvanced) is discussed. This includes bandwidth extension via carrier aggregation to support deployment bandwidths up to 100 MHz, downlink spatial multiplexing including single-cell multi-user multiple-input multiple-output transmission and coordinated multi point transmission, uplink spatial multiplexing including extension to four-layer MIMO, and heterogeneous networks with emphasis on Type 1 and Type 2 relays. Finally, the performance of LTEAdvanced using IMT-A scenarios is presented and compared against IMT-A targets for full buffer and bursty traffic model.

1,044 citations


"Performance Evaluation of LTE and W..." refers background in this paper

  • ...4GHz band has already been established [7], and the recent inclusion of features on LTE standard [12] are promoting its usage on pico and femto cells, it is possible that in the near future coexistence between LTE (-ADV) and Wi-Fi will become important....

    [...]

Journal ArticleDOI
TL;DR: Concepts underlying the "property" and "commons" debate are presented, options for spectrum reform are clarified, and the trade-offs of spectrum sharing are described.
Abstract: Many complain about severe spectrum shortage. The shortage comes from outdated spectrum policies that allows for little sharing. Regulators have granted licenses that offer exclusive access to the spectrum. When these licensees are not transmitting, the spectrum sits idle. A new technology regarding spectrum shortage enables more spectrum sharing that unleashes innovative products and services, provided that we adopt the appropriate spectrum policies. Two camps are pushing for extreme reform, one for "property rights" and the other for "spectrum commons". This article presents concepts underlying the "property" and "commons" debate, clarifies options for spectrum reform, and describes the trade-offs of spectrum sharing

592 citations


"Performance Evaluation of LTE and W..." refers background in this paper

  • ...One of the most promising techniques for dealing with the lack of available spectrum is the concept of spectrum sharing [1] ....

    [...]

Proceedings ArticleDOI
22 Apr 2007
TL;DR: An adjusted Shannon capacity formula is introduced, where it is shown that the bandwidth efficiency can be calculated based on system parameters, while the SNR efficiency is extracted from detailed link level studies.
Abstract: In this paper we propose a modification to Shannon capacity bound in order to facilitate accurate benchmarking of UTRAN long term evolution (LTE). The method is generally applicable to wireless communication systems, while we have used LTE air-interface technology as a case study. We introduce an adjusted Shannon capacity formula, where we take into account the system bandwidth efficiency and the SNR efficiency of LTE. Separating these issues, allows for simplified parameter extraction. We show that the bandwidth efficiency can be calculated based on system parameters, while the SNR efficiency is extracted from detailed link level studies including advanced features of MIMO and frequency domain packet scheduling (FDPS). We then use the adjusted Shannon capacity formula combined with G-factor distributions for macro and micro cell scenarios to predict LTE cell spectral efficiency (SE). Such LTE SE predictions are compared to LTE cell SE results generated by system level simulations. The results show an excellent match of less that 5-10% deviation.

580 citations


"Performance Evaluation of LTE and W..." refers methods in this paper

  • ...For physical layer (PHY) abstraction, Shannon-fitting [14] is employed to predict the PHY performance at the system-level....

    [...]

Proceedings ArticleDOI
09 Jun 2013
TL;DR: This paper considers two of the most prominent wireless technologies available today, namely Long Term Evolution (LTE), and WiFi, and addresses some problems that arise from their coexistence in the same band, and proposes a simple coexistence scheme that reuses the concept of almost blank subframes in LTE.
Abstract: The recent development of regulatory policies that permit the use of TV bands spectrum on a secondary basis has motivated discussion about coexistence of primary (e.g. TV broadcasts) and secondary users (e.g. WiFi users in TV spectrum). However, much less attention has been given to coexistence of different secondary wireless technologies in the TV white spaces. Lack of coordination between secondary networks may create severe interference situations, resulting in less efficient usage of the spectrum. In this paper, we consider two of the most prominent wireless technologies available today, namely Long Term Evolution (LTE), and WiFi, and address some problems that arise from their coexistence in the same band. We perform exhaustive system simulations and observe that WiFi is hampered much more significantly than LTE in coexistence scenarios. A simple coexistence scheme that reuses the concept of almost blank subframes in LTE is proposed, and it is observed that it can improve the WiFi throughput per user up to 50 times in the studied scenarios.

324 citations


"Performance Evaluation of LTE and W..." refers background in this paper

  • ...This kind of approach has started to be investigated in [16], where LTE/Wi-Fi coexistence is enabled by LTE blank subframe allocation....

    [...]

Proceedings ArticleDOI
27 Aug 2007
TL;DR: A channel hopping design is prototype using PRISM NICs, and it is found that it can sustain throughput at levels of RF interference well above that needed to disrupt unmodified links, and at a reasonable cost in terms of switching overheads.
Abstract: We study the impact on 802.11 networks of RF interference from devices such as Zigbee and cordless phones that increasingly crowd the 2.4GHz ISM band, and from devices such as wireless camera jammers and non-compliant 802.11 devices that seek to disrupt 802.11 operation. Our experiments show that commodity 802.11 equipment is surprisingly vulnerable to certain patterns of weak or narrow-band interference. This enables us to disrupt a link with an interfering signal whose power is 1000 times weaker than the victim's 802.11 signals, or to shut down a multiple AP, multiple channel managed network at a location with a single radio interferer. We identify several factors that lead to these vulnerabilities, ranging from MAC layer driver implementation strategies to PHY layer radio frequency implementation strategies. Our results further show that these factors are not overcome by simply changing 802.11 operational parameters (such as CCA threshold, rate and packet size) with the exception of frequency shifts. This leads us to explore rapid channel hopping as a strategy to withstand RF interference. We prototype a channel hopping design using PRISM NICs, and find that it can sustain throughput at levels of RF interference well above that needed to disrupt unmodified links, and at a reasonable cost in terms of switching overheads.

300 citations


"Performance Evaluation of LTE and W..." refers background in this paper

  • ...However, it is observed that the coexistence of heterogeneous systems in the same frequency bands causes a meaningful degradation on the system performance (e.g., Wi-Fi and Bluetooth [3], Wi-Fi and ZigBee [4], Wi-Fi and WiMAX [5])....

    [...]

  • ..., Wi-Fi and Bluetooth [3], Wi-Fi and ZigBee [4], Wi-Fi and WiMAX [5])....

    [...]

Trending Questions (1)
What is the difference between LTE Home Internet and FIOS?

Simulation results show that LTE system performance is slightly affected by coexistence whereas Wi-Fi is significantly impacted by LTE transmissions.