scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review

01 Oct 2017-Renewable & Sustainable Energy Reviews (Pergamon)-Vol. 78, pp 1378-1389
TL;DR: In this paper, a comparative study of various stand alone solar photovoltaic(PV), grid connected PV and hybrid renewable energy system (HRES) studied across the globe is presented.
Abstract: The energy demand across the globe has increased in many folds due to technological advancement, rapid growth in industries and increase in household energy demand. This led the engineers and planners to think and find the means to harvest the alternative energy sources other than the fossil fuel. Solar, wind, biomass, mini hydro are some of the resources used worldwide to generate energy as per the availability of resources. This paper presents a comparative performances of various stand alone solar photovoltaic(PV), grid connected PV and hybrid renewable energy system (HRES) studied across the globe. The standalone PV system is used to supply electricity to a small habitats/hamlets or to a single household. Hybrid energy system consists of two or more energy sources for generation of power for rural electrification in off grid locations and in grid connected PV systems, excess electricity produced is injected to the grid thereby generating additional income. The research works carried out by various researchers around the globe on renewable energy sources particularly for rural electrification is discussed in this paper. Besides this the utilisation of renewable electricity for Plug-in-Electric Vehicles (PEV) studied across the globe were also discussed.
Citations
More filters
Journal ArticleDOI
Jijian Lian1, Yusheng Zhang1, Chao Ma1, Yang Yang1, Evance Chaima1 
TL;DR: Hybrid methods with high accuracy and fast convergence that can surmount the defects of single methods are the most promising sizing method compared to the other three sizing methods.

289 citations

01 Jan 2011
TL;DR: In this paper, the authors present results obtained from monitoring a 1.72kWp photovoltaic system installed on a flat roof of a 12m high building in Dublin, Ireland (latitude 53.4°N and longitude 6.3°E).
Abstract: This paper presents results obtained from monitoring a 1.72 kWp photovoltaic system installed on a flat roof of a 12 m high building in Dublin, Ireland (latitude 53.4°N and longitude 6.3°E). The system was monitored between November 2008 and October 2009 and all the electricity generated was fed into the low voltage supply to the building. Monthly average daily and annual performance parameters of the PV system evaluated include: final yield, reference yield, array yield, system losses, array capture losses, cell temperature losses, PV module efficiency, system efficiency, inverter efficiency, performance ratio and capacity factor. The maximum solar radiation, ambient temperature and PV module temperature recorded were 1241 W/m2 in March, 29.5 °C and 46.9 °C in June respectively. The annual total energy generated was 885.1 kW h/kWp while the annual average daily final yield, reference yield and array yield were 2.41 kW h/kWp/day, 2.85 kW h/kWp/day and 2.62 kW h/kWp/day respectively. The annual average daily PV module efficiency, system efficiency and inverter efficiency were 14.9%, 12.6% and 89.2% respectively while the annual average daily performance ratio and capacity factor were 81.5% and 10.1% respectively. The annual average daily system losses, capture losses and cell temperature losses were 0.23 h/day, 0.22 h/day and 0.00 h/day respectively. Comparison of this system with other systems in different locations showed that the system had the highest annual average daily PV module efficiency, system efficiency and performance ratio of 14.9%, 12.6% and 81.5% respectively. The PV system’s annual average daily final yield of 2.4 kW h/kWp/day is higher than those reported in Germany, Poland and Northern Ireland. It is comparable to results from some parts of Spain but it is lower than the reported yields in most parts of Italy and Spain. Despite low insolation levels, high average wind speeds and low ambient temperature improve Ireland’s suitability.

279 citations

Journal ArticleDOI
01 Apr 2018-Energy
TL;DR: In this article, the feasibility of a grid-tied hybrid microgrid system for local inhabitants of Kallar Kahar near Chakwal city of Punjab province in Pakistan is investigated.

221 citations

Journal ArticleDOI
TL;DR: Although the recent integration requirements can improve the grid operation, stability, security, and reliability, further improvements are still required with respect to protective regulations, global harmonization, and control optimization.

206 citations

Journal ArticleDOI
TL;DR: Performance of TLBO is found to be better than BFPSO, PSO and GA as well as the most efficient solution among all cases as per the analysis of results for individual cases.

165 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the different computer tools that can be used to analyse the integration of renewable energy is presented, and the results in this paper provide the information necessary to identify a suitable energy tool for analysing the integration into various energy-systems under different objectives.

1,480 citations

Journal ArticleDOI
TL;DR: In this paper, the levelized cost of electricity (LCOE) of solar photovoltaic (PV) generation is compared to other electricity generation technologies. But there is a lack of clarity of reporting assumptions, justifications and degree of completeness in LCOE calculations, which produces widely varying and contradictory results.
Abstract: As the solar photovoltaic (PV) matures, the economic feasibility of PV projects are increasingly being evaluated using the levelized cost of electricity (LCOE) generation in order to be compared to other electricity generation technologies. Unfortunately, there is lack of clarity of reporting assumptions, justifications and degree of completeness in LCOE calculations, which produces widely varying and contradictory results. This paper reviews the methodology of properly calculating the LCOE for solar PV, correcting the misconceptions made in the assumptions found throughout the literature. Then a template is provided for better reporting of LCOE results for PV needed to influence policy mandates or make invest decisions. A numerical example is provided with variable ranges to test sensitivity, allowing for conclusions to be drawn on the most important variables. Grid parity is considered when the LCOE of solar PV is comparable with grid electrical prices of conventional technologies and is the industry target for cost-effectiveness. Given the state of the art in the technology and favorable financing terms it is clear that PV has already obtained grid parity in specific locations and as installed costs continue to decline, grid electricity prices continue to escalate, and industry experience increases, PV will become an increasingly economically advantageous source of electricity over expanding geographical regions.

1,048 citations

Posted Content
TL;DR: The methodology of properly calculating the levelized cost of electricity for solar PV is reviewed, correcting the misconceptions made in the assumptions found throughout the literature and a template is provided for better reporting of LCOE results for PV needed to influence policy mandates or make invest decisions.
Abstract: As the solar photovoltaic (PV) matures, the economic feasibility of PV projects are increasingly being evaluated using the levelized cost of electricity (LCOE) generation in order to be compared to other electricity generation technologies. Unfortunately, there is lack of clarity of reporting assumptions, justifications and degree of completeness in LCOE calculations, which produces widely varying and contradictory results. This paper reviews the methodology of properly calculating the LCOE for solar PV, correcting the misconceptions made in the assumptions found throughout the literature. Then a template is provided for better reporting of LCOE results for PV needed to influence policy mandates or make invest decisions. A numerical example is provided with variable ranges to test sensitivity, allowing for conclusions to be drawn on the most important variables. Grid parity is considered when the LCOE of solar PV is comparable with grid electrical prices of conventional technologies and is the industry target for cost-effectiveness. Given the state of the art in the technology and favorable financing terms it is clear that PV has already obtained grid parity in specific locations and as installed costs continue to decline, grid electricity prices continue to escalate, and industry experience increases, PV will become an increasingly economically advantageous source of electricity over expanding geographical regions.

1,006 citations

Journal ArticleDOI
TL;DR: In this paper, the importance of grid-connected PV system regarding the intermittent nature of renewable generation, and the characterization of PV generation with regard to grid code compliance is investigated and emphasized.
Abstract: Traditional electric power systems are designed in large part to utilize large baseload power plants, with limited ability to rapidly ramp output or reduce output below a certain level. The increase in demand variability created by intermittent sources such as photovoltaic (PV) presents new challenges to increase system flexibility. This paper aims to investigate and emphasize the importance of the grid-connected PV system regarding the intermittent nature of renewable generation, and the characterization of PV generation with regard to grid code compliance. The investigation was conducted to critically review the literature on expected potential problems associated with high penetration levels and islanding prevention methods of grid tied PV. According to the survey, PV grid connection inverters have fairly good performance. They have high conversion efficiency and power factor exceeding 90% for wide operating range, while maintaining current harmonics THD less than 5%. Numerous large-scale projects are currently being commissioned, with more planned for the near future. Prices of both PV and balance of system components (BOS) are decreasing which will lead to further increase in use. The technical requirements from the utility power system side need to be satisfied to ensure the safety of the PV installer and the reliability of the utility grid. Identifying the technical requirements for grid interconnection and solving the interconnect problems such as islanding detection, harmonic distortion requirements and electromagnetic interference are therefore very important issues for widespread application of PV systems. The control circuit also provides sufficient control and protection functions like maximum power tracking, inverter current control and power factor control. Reliability, life span and maintenance needs should be certified through the long-term operation of PV system. Further reduction of cost, size and weight is required for more utilization of PV systems. Using PV inverters with a variable power factor at high penetration levels may increase the number of balanced conditions and subsequently increase the probability of islanding. It is strongly recommended that PV inverters should be operated at unity power factor.

923 citations

Journal ArticleDOI
TL;DR: In this paper, a methodology for calculation of the optimum size of a battery bank and the PV array for a standalone hybrid wind/PV power system is developed, where long term data of wind speed and irradiance recorded for every hour of the day for 30 years were used.
Abstract: In this paper, a methodology for calculation of the optimum size of a battery bank and the PV array for a standalone hybrid wind/PV power system is developed. Long term data of wind speed and irradiance recorded for every hour of the day for 30 years were used. These data were used to calculate the average power generated by a wind turbine and a PV module for every hour of a typical day in a month. A load of a typical house in Massachusetts, USA, was used as a load demand of the hybrid system. For a given load and a desired loss of power supply probability, an optimum number of batteries and PV modules was calculated based on the minimum cost of the power system.

923 citations