scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Performance improvement of PVT module with applications of nano-fluids and phase change materials: A review

TL;DR: In this paper, a review of different techniques to cool the solar cell in order to reduce its cell temperature increasing its electrical efficiency and also use the collected vital thermal energy to heat water (increase thermal efficiency) in a heat exchanger.
Abstract: Performance improvement of the PVT module is a very important topic in recent decades. Solar energy is a vital resource for mankind. Continuous elevation of the cell temperature of the PVT module results in a decrease in PV electrical efficiency. This review paper discusses the different techniques to cool the solar cell in order to reduce its cell temperature increasing its electrical efficiency and, also use the collected vital thermal energy to heat water (increase thermal efficiency) in a heat exchanger. A brief study on PVT/PCM and PVT/Nano-fluid system is done in this review paper. Furthermore, the PVT system is observed to be a very effective way to extract most of the available solar energy. Therefore, work must be carried out to increase their efficiency with the application of nano-fluids and phase change materials along with fins, or the use of binary nano-fluids/ nano- PCM to reduce the cost. This review paper highlights the application of PCM and nano-fluids for the effective cooling of the PV panel.
Citations
More filters
Book ChapterDOI
01 Jan 2021
TL;DR: In this paper, a flat plate air collector-integrated drying system with different types of PV modules (a-Si, CdTe p-Si and c-Si) is studied.
Abstract: This chapter includes environment feasibility of solar hybrid systems. In this regard, drying system with PVT air collector has been studied in details. It is seen that the market has different types of PV modules (a-Si, CdTe p-Si, c-Si, and CIGS) are available in the market. Further, thermal modeling has been explored to calculate the thermal energy (TE). Weather-related data has been taken from IMD, Pune, for yearly analysis. Various temperatures, namely outlet air from collector, cell, drying chamber, and crop surface have been calculated through thermal modeling developed for the system. Further, energy payback time (EPBT) for 100% PV area with different PV technologies used on flat plate air collector-integrated drying system found between 3.2 and 1.59 years. Environmental feasibility has also been evaluated for various solar PV cell technologies integrated with the system.

1 citations

References
More filters
Book
01 Jan 2011
TL;DR: In this article, the role of policy in PV Industry Growth: Past, Present and Future (John Byrne and Lado Kurdgelashvili) is discussed, as well as future cell and array possibilities.
Abstract: About the Editors. List of Contributors. Preface to the 2nd Edition. 1 Achievements and Challenges of Solar Electricity from Photovoltaics (Steven Hegedus and Antonio Luque). 1.1 The Big Picture. 1.2 What is Photovoltaics? 1.3 Photovoltaics Today. 1.4 The Great Challenge. 1.5 Trends in Technology. 1.6 Conclusions. 2 The Role of Policy in PV Industry Growth: Past, Present and Future (John Byrne and Lado Kurdgelashvili). 2.1 Introduction. 2.2 Policy Review of Selected Countries. 2.3 Policy Impact on PV Market Development. 2.4 Future PV Market Growth Scenarios. 2.5 Toward a Sustainable Future. 3 The Physics of the Solar Cell (Jeffery L. Gray). 3.1 Introduction. 3.2 Fundamental Properties of Semiconductors. 3.3 Solar Cell Fundamentals. 3.4 Additional Topics. 3.5 Summary. 4 Theoretical Limits of Photovoltaic Conversion and New-generation Solar Cells (Antonio Luque and Antonio Marti). 4.1 Introduction. 4.2 Thermodynamic Background. 4.3 Photovoltaic Converters. 4.4 The Technical Efficiency Limit for Solar Converters. 4.5 Very-high-efficiency Concepts. 4.6 Conclusions. 5 Solar Grade Silicon Feedstock (Bruno Ceccaroli and Otto Lohne). 5.1 Introduction. 5.2 Silicon. 5.3 Production of Silicon Metal/Metallurgical Grade Silicon. 5.4 Production of Polysilicon/Silicon of Electronic and Photovoltaic Grade. 5.5 Current Silicon Feedstock to Solar Cells. 5.6 Requirements of Silicon for Crystalline Solar Cells. 5.7 Routes to Solar Grade Silicon. 5.8 Conclusions. 6 Bulk Crystal Growth and Wafering for PV (Hugo Rodriguez, Ismael Guerrero, Wolfgang Koch, Arthur L. Endros, Dieter Franke, Christian Hassler, Juris P. Kalejs and H. J. Moller). 6.1 Introduction. 6.2 Bulk Monocrystalline Material. 6.3 Bulk Multicrystalline Silicon. 6.4 Wafering. 6.5 Silicon Ribbon and Foil Production. 6.6 Numerical Simulations of Crystal Growth Techniques. 6.7 Conclusions. 7 Crystalline Silicon Solar Cells and Modules (Ignacio Tobias, Carlos del Ca"nizo and Jesus Alonso). 7.1 Introduction. 7.2 Crystalline Silicon as a Photovoltaic Material. 7.3 Crystalline Silicon Solar Cells. 7.4 Manufacturing Process. 7.5 Variations to the Basic Process. 7.6 Other Industrial Approaches. 7.7 Crystalline Silicon Photovoltaic Modules. 7.8 Electrical and Optical Performance of Modules. 7.9 Field Performance of Modules. 7.10 Conclusions. 8 High-efficiency III-V Multijunction Solar Cells (D. J. Friedman, J. M. Olson and Sarah Kurtz). 8.1 Introduction. 8.2 Applications. 8.3 Physics of III-V Multijunction and Single-junction Solar Cells. 8.4 Cell Configuration. 8.5 Computation of Series-connected Device Performance. 8.6 Materials Issues Related to GaInP/GaAs/Ge Solar Cells. 8.7 Epilayer Characterization and Other Diagnostic Techniques. 8.8 Reliability and Degradation. 8.9 Future-generation Solar Cells. 8.10 Summary. 9 Space Solar Cells and Arrays (Sheila Bailey and Ryne Raffaelle). 9.1 The History of Space Solar Cells. 9.2 The Challenge for Space Solar Cells. 9.3 Silicon Solar Cells. 9.4 III-V Solar Cells. 9.5 Space Solar Arrays. 9.6 Future Cell and Array Possibilities. 9.7 Power System Figures of Merit. 9.8 Summary. 10 Photovoltaic Concentrators (Gabriel Sala and Ignacio Anton). 10.1 What is the Aim of Photovoltaic Concentration and What Does it Do? 10.2 Objectives, Limitations and Opportunities. 10.3 Typical Concentrators: an Attempt at Classification. 10.4 Concentration Optics: Thermodynamic Limits. 10.5 Factors of Merit for Concentrators in Relation to the Optics. 10.6 Photovoltaic Concentration Modules and Assemblies. 10.7 Tracking for Concentrator Systems. 10.8 Measurements of Cells, Modules and Photovoltaic Systems in Concentration. 10.9 Summary. 11 Crystalline Silicon Thin-Film Solar Cells via High-temperature and Intermediate-temperature Approaches (Armin G. Aberle and Per I. Widenborg). 11.1 Introduction. 11.2 Modelling. 11.4 Crystalline Silicon Thin-Film Solar Cells on Intermediate-T Foreign Supporting Materials. 11.5 Conclusions. 12 Amorphous Silicon-based Solar Cells (Eric A. Schiff, Steven Hegedus and Xunming Deng). 12.1 Overview. 12.2 Atomic and Electronic Structure of Hydrogenated Amorphous Silicon. 12.3 Depositing Amorphous Silicon. 12.4 Understanding a-Si pin Cells. 12.5 Multijunction Solar Cells. 12.6 Module Manufacturing. 12.7 Conclusions and Future Projections. 13 Cu(InGa)Se2 Solar Cells (William N. Shafarman, Susanne Siebentritt and Lars Stolt). 13.1 Introduction. 13.2 Material Properties. 13.3 Deposition Methods. 13.4 Junction and Device Formation. 13.5 Device Operation. 13.6 Manufacturing Issues. 13.7 The Cu(InGa)Se2 Outlook. 14 Cadmium Telluride Solar Cells (Brian E. McCandless and James R. Sites). 14.1 Introduction. 14.2 Historical Development. 14.3 CdTe Properties. 14.4 CdTe Film Deposition. 14.5 CdTe Thin Film Solar Cells. 14.6 CdTe Modules. 14.7 Future of CdTe-based Solar Cells. 15 Dye-sensitized Solar Cells (Kohjiro Hara and Shogo Mori). 15.1 Introduction. 15.2 Operating Mechanism of DSSC. 15.3 Materials. 15.4 Performance of Highly Efficient DSSCs. 15.5 Electron-transfer Processes. 15.6 New Materials. 15.7 Stability. 15.8 Approach to Commercialization. 15.9 Summary and Prospects. 16 Sunlight Energy Conversion Via Organics (Sam-Shajing Sun and Hugh O'Neill). 16.1 Principles of Organic and Polymeric Photovoltaics. 16.2 Evolution and Types of Organic and Polymeric Solar Cells. 16.3 Organic and Polymeric Solar Cell Fabrication and Characterization. 16.4 Natural Photosynthetic Sunlight Energy Conversion Systems. 16.5 Artificial Photosynthetic Systems. 16.6 Artificial Reaction Centers. 16.7 Towards Device Architectures. 16.8 Summary and Future Perspectives. 17 Transparent Conducting Oxides for Photovoltaics (Alan E. Delahoy and Sheyu Guo). 17.1 Introduction. 17.2 Survey of Materials. 17.3 Deposition Methods. 17.4 TCO Theory and Modeling: Electrical and Optical Properties and their Impact on Module Performance. 17.5 Principal Materials and Issues for Thin Film and Wafer-based PV. 17.6 Textured Films. 17.7 Measurements and Characterization Methods. 17.8 TCO Stability. 17.9 Recent Developments and Prospects. 18 Measurement and Characterization of Solar Cells and Modules (Keith Emery). 18.1 Introduction. 18.2 Rating PV Performance. 18.3 Current-Voltage Measurements. 18.4 Spectral Responsivity Measurements. 18.5 Module Qualification and Certification. 18.6 Summary. 19 PV Systems (Charles M. Whitaker, Timothy U. Townsend, Anat Razon, Raymond M. Hudson and Xavier Vallve). 19.1 Introduction: There is gold at the end of the rainbow. 19.2 System Types. 19.3 Exemplary PV Systems. 19.4 Ratings. 19.5 Key System Components. 19.6 System Design Considerations. 19.7 System Design. 19.8 Installation. 19.9 Operation and Maintenance/Monitoring. 19.10 Removal, Recycling and Remediation. 19.11 Examples. 20 Electrochemical Storage for Photovoltaics (Dirk Uwe Sauer). 20.1 Introduction. 20.2 General Concept of Electrochemical Batteries. 20.3 Typical Operation Conditions of Batteries in PV Applications. 20.4 Secondary Electrochemical Accumulators with Internal Storage. 20.5 Secondary Electrochemical Battery Systems with External Storage. 20.6 Investment and Lifetime Cost Considerations. 20.7 Conclusion. 21 Power Conditioning for Photovoltaic Power Systems (Heribert Schmidt, Bruno Burger and Jurgen Schmid). 21.1 Charge Controllers and Monitoring Systems for Batteries in PV Power Systems. 21.2 Inverters. 22 Energy Collected and Delivered by PV Modules (Eduardo Lorenzo). 22.1 Introduction. 22.2 Movement between Sun and Earth. 22.3 Solar Radiation Components. 22.4 Solar Radiation Data and Uncertainty. 22.5 Radiation on Inclined Surfaces. 22.6 Diurnal Variations of the Ambient Temperature. 22.7 Effects of the Angle of Incidence and of Dirt. 22.8 Some Calculation Tools. 22.9 Irradiation on Most Widely Studied Surfaces. 22.10 PV Generator Behaviour Under Real Operation Conditions. 22.11 Reliability and Sizing of Stand-alone PV Systems. 22.12 The Case of Solar Home Systems. 22.13 Energy Yield of Grid-connected PV Systems. 22.14 Conclusions. 23 PV in Architecture (Tjerk H. Reijenga and Henk F. Kaan). 23.1 Introduction. 23.2 PV in Architecture. 23.3 BIPV Basics. 23.4 Steps in the Design Process with PV. 23.5 Concluding Remarks. 24 Photovoltaics and Development (Jorge M. Huacuz, Jaime Agredano and Lalith Gunaratne). 24.1 Electricity and Development. 24.2 Breaking the Chains of Underdevelopment. 24.3 The PV Alternative. 24.4 Examples of PV Rural Electrification. 24.5 Toward a New Paradigm for Rural Electrification. References. Index.

2,816 citations

Journal ArticleDOI
TL;DR: In this article, a thorough review of photovoltaic thermal systems is done on the basis of its performance based on electrical as well as thermal output, and a case study for PV and PV/T system based on exergetic analysis is presented.
Abstract: In this paper, a thorough review of photovoltaic and photovoltaic thermal systems is done on the basis of its performance based on electrical as well as thermal output. Photovoltaic systems are classified according to their use, i.e., electricity production and thermal applications along with the electricity production. The application of various photovoltaic systems is also discussed in detail. The performance analysis including all aspects, e.g., electrical, thermal, energy, and exergy efficiency are also discussed. A case study for PV and PV/T system based on exergetic analysis is presented.

207 citations


"Performance improvement of PVT modu..." refers background in this paper

  • ...Then, in 1876, Photo-generation of current through selenium tubes was founded by Adams and Day [2]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a mathematical model was proposed for the new nanofluid/nano-PCM photovoltaic/thermal (PVT) system to reduce the located area and cost, improve the efficiency and save lots of materials.

186 citations


"Performance improvement of PVT modu..." refers background or methods in this paper

  • ...[20] Numerical validation of modelling of PV/T system using nano-fluid coolant...

    [...]

  • ...The above four ODE equations are solved to get the temperature of the glass, solar cell, PCM temperature and nano-fluid temperature [20]....

    [...]

  • ...[20] carried out an experimental validation of the modelling of PV/PCM/Nano-fluid....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a comprehensive literature on thermophysical properties of nanofluids and the application of solar collector with Nanofluiders have been compiled and reviewed. But, their specific applications in the solar collector are not discussed.

171 citations

Journal ArticleDOI
TL;DR: In this paper, a double pass photovoltaic thermal solar collector suitable for solar drying applications has been developed and tested, and a steady state closed form solution to determine the outlet and mean photiovoltaic panel temperature has been obtained for the differential equations of the upper and lower channels of the collector.

168 citations


"Performance improvement of PVT modu..." refers background in this paper

  • ...Our earth gets 174*1015 W of incoming radiation [6, 7]....

    [...]

  • ...[6] Sopian K, LiuHT, KakacS, VezirogluTN....

    [...]