scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Performance of Dye Removal from Single and Binary Component Systems by Adsorption on Composite Hydrogel Beads Derived from Fruits Wastes Entrapped in Natural Polymeric Matrix

01 Dec 2022-Gels-Vol. 8, Iss: 12, pp 795-795
TL;DR: In this article , a composite hydrogel by entrapping cherry stones powder on chitosan, which is known as one of the most abundant natural polymers, was used for the treatment of contaminated water.
Abstract: The treatment of contaminated water is currently a major concern worldwide. This work was directed towards the preparation of a composite hydrogel by entrapping cherry stones powder on chitosan, which is known as one of the most abundant natural polymers. The synthesized material was characterized by scanning electron microscopy, by Fourier transform infrared spectroscopy, and by the point of zero charge determination. Its ability to remove two azo dyes models (Acid Red 66 and Reactive Black 5) existing in single form and in binary mixture was evaluated. Response Surface Methodology–Central Composite Design was used to optimize three parameters affecting the process while targeting the lowest final contaminant concentrations. The best results were obtained at pH 2, an adsorbent dose of 100 g/L, and a temperature of 30 °C, when more than 90% of the pollutants from the single component systems and more than 70% of those of the binary mixtures were removed from their aqueous solutions. The adsorption process was in accordance with Elovich and pseudo-second-order kinetic models, and closely followed the Freundlich and Temkin equilibrium isotherms. The obtained results led to the conclusion that the prepared hydrogel composite possesses the ability to successfully retain the target molecules and that it can be considered as a viable adsorbent material.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the potential of raw durian husk and NaOH-modified durian hulls as an adsorbent, using different doses, 0.5 g, 1.0 g, and 2.0g, is investigated to improve soaking water of pepper berries during the retting process.
Abstract: The potential of raw durian husk and NaOH-modified durian husk as an adsorbent, using different doses, 0.5 g, 1.0 g, 1.5 g, and 2.0 g, is investigated to improve soaking water of pepper berries during the retting process. The surface area and the pore size of the durian husk were examined using Brunner Emmett and Teller analysis. The surface area of NaOH-modified durian husk is higher (2.33 m2/g) compared to the raw durian husk (1.51 m2/g). NaOH-modified durian husk has a higher porous structure than the raw durian husk, but both pore diameters are more than 50 nm, which is considered micropore raw material. The effect of the raw durian husk on pH, chemical oxygen demand (COD), dissolved oxygen (DO), and turbidity were compared to the NaOH-modified durian husk with different doses. The 2.0 g of NaOH-modified durian husk enhanced changes in the four parameters. The highest pH value using NaOH-modified durian husk was 6.10 ± 0.02, while turbidity and COD increased to 971.33 ± 1.15 NTU and 1984.67 ± 3.21 mg/L, respectively. The DO of NaOH-modified durian husk shows the lowest reduction to 1.49 mg/L with 2.0 g of NaOH-modified durian husk. The experimental data was best fitted with a first-order kinetic model. Durian husk treated with NaOH could be used as a potential adsorbent to enhance the soaking water for pepper berries.
Journal ArticleDOI
01 Apr 2023-Gels
TL;DR: In this paper , a low-cost adsorbent was prepared by using cherry stones powder and chitosan and used to retain Reactive Black 5 dye from aqueous solution.
Abstract: A low-cost adsorbent was prepared by using cherry stones powder and chitosan and used to retain Reactive Black 5 dye from aqueous solution. Then, the spent material was submitted to a regeneration process. Five different eluents (water, sodium hydroxide, hydrochloric acid, sodium chloride and ethanol) were tested. Among them, sodium hydroxide was selected for an advanced investigation. Values of three working conditions, namely the eluent volume, its concentration and the desorption temperature, were optimized by Response Surface Methodology-Box–Behnken Design. In the established settings (NaOH volume: 30 mL, NaOH concentration: 1.5 M, working temperature: 40 °C), three successive cycles of adsorption/desorption were conducted. The analysis performed by Scanning Electron Microscopy and by Fourier Transform Infrared Spectroscopy revealed the evolution of the adsorbent throughout the dye elution from the material. Pseudo-second-order kinetic model and Freundlich equilibrium isotherm were able to accurately describe the desorption process. Based on the acquired results, our outcomes sustain the suitability of the synthesized material as dye adsorbent and the possibility of efficaciously recycling and reusing it.
References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the state-of-the-art in isotherm modeling, its fundamental characteristics and mathematical derivations, as well as the key advance of the error functions, its utilization principles together with the comparisons of linearized and nonlinearized isotherms models have been highlighted and discussed.

5,914 citations

Journal ArticleDOI
01 Aug 2004
TL;DR: The theoretical results (derived equations) show that the observed rate constants of pseudo-first-order and pseudo-second-order models are combinations of adsorption and desorption rate constants and also initial concentration of solute.
Abstract: The kinetics of sorption from a solution onto an adsorbent has been explored theoretically. The general analytical solution was obtained for two cases. It has been shown that at high initial concentration of solute (sorbate) the general equation converts to a pseudo-first-order model and at lower initial concentration of solute it converts to a pseudo-second-order model. In other words, the sorption process obeys pseudo-first-order kinetics at high initial concentration of solute, while it obeys pseudo-second-order kinetics model at lower initial concentration of solute. The theoretical results (derived equations) show that the observed rate constants of pseudo-first-order and pseudo-second-order models are combinations of adsorption and desorption rate constants and also initial concentration of solute. The obtained theoretical equations are used to correlate experimental data for sorption kinetics of some solutes on various sorbents. The predictions of the theory are in excellent agreement with the experimental data.

1,860 citations

Journal ArticleDOI
TL;DR: Adsorption isotherms modeling shows that the interaction of phenolic compounds with activated carbon surface is localized monolayer adsorption, which correlates well with respective increase in molecular weight, cross-sectional area, and hydrophobicity and decrease in solubility and pKa.

881 citations

Journal ArticleDOI
TL;DR: A review of a certain class of theoretical models describing the kinetics of pollutants sorption onto various sorbents assuming the rate of surface reaction as the rate-limiting step are considered.

711 citations

Journal ArticleDOI
TL;DR: In this paper, the approach equilibrium parameter of Elovich equation (R E ) was used to describe the characteristic curves of adsorption kinetics and the mean deviation obtained from the three kinetic models revealed that Elovich equations was the most suitable one.

686 citations