scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface.

01 Sep 2018-Journal of Neuroscience Methods (Elsevier)-Vol. 307, pp 164-174
TL;DR: periodic component analysis ( π CA) is presented as an alternative spatial filtering approach to extract the SSVEP component effectively without involving extensive modelling of the noise and provides better detection accuracy compared to CCA and on par with that of MEC at a lower computational cost.
About: This article is published in Journal of Neuroscience Methods.The article was published on 2018-09-01. It has received 6 citations till now. The article focuses on the topics: Signal-to-noise ratio & Noise.
Citations
More filters
Journal ArticleDOI
TL;DR: GTRCA is applied to EEG data recorded from 35 subjects during a steady-state visual-evoked potential (SSVEP) experiment and concludes that gTRCA offers a framework for group-level EEG data analysis and brain-computer interfaces alternative in complement to grand averaging.
Abstract: EEG is known to contain considerable inter-trial and inter-subject variability, which poses a challenge in any group-level EEG analyses. A true experimental effect must be reproducible even with variabilities in trials, sessions, and subjects. Extracting components that are reproducible across trials and subjects benefits both understanding common mechanisms in neural processing of cognitive functions and building robust brain-computer interfaces. This study extends our previous method (task-related component analysis, TRCA) by maximizing not only trial-by-trial reproducibility within single subjects but also similarity across a group of subjects, hence referred to as group TRCA (gTRCA). The problem of maximizing reproducibility of time series across trials and subjects is formulated as a generalized eigenvalue problem. We applied gTRCA to EEG data recorded from 35 subjects during a steady-state visual-evoked potential (SSVEP) experiment. The results revealed: (1) The group-representative data computed by gTRCA showed higher and consistent spectral peaks than other conventional methods; (2) Scalp maps obtained by gTRCA showed estimated source locations consistently within the occipital lobe; And (3) the high-dimensional features extracted by gTRCA are consistently mapped to a low-dimensional space. We conclude that gTRCA offers a framework for group-level EEG data analysis and brain-computer interfaces alternative in complement to grand averaging.

17 citations

Journal ArticleDOI
TL;DR: A significant improvement in the target identification performance demonstrates that the proposed LCSE method can be seen as a promising potential candidate for efficient SSVEP detection in brain-computer interface (BCI) systems.
Abstract: Objective This study introduces and evaluates a novel target identification method, latent common source extraction (LCSE), that uses subject-specific training data for the enhancement of detection of steady-state visual evoked potential (SSVEP). Approach LCSE seeks to construct a common latent representation of the SSVEP signal subspace that is stable across multiple trials of electroencephalographic (EEG) data. The spatial filter thus obtained improves the signal-to-noise ratio (SNR) of the SSVEP components by removing nuisance signals that are irrelevant to the generalized signal representation learnt from the given data. In this study a comparison of SSVEP identification performance between the proposed method, extended canonical correlation analysis (ExtCCA) and multiset canonical correlation analysis (MsetCCA) was conducted using SSVEP benchmark data of 40 targets recorded from 35 subjects to validate the effectiveness of the LCSE framework. Main results The results indicate that the LCSE framework significantly outperforms the other two methods in terms of both classification accuracy and information transfer rates (ITRs). Significance The significant improvement in the target identification performance demonstrates that the proposed LCSE method can be seen as a promising potential candidate for efficient SSVEP detection in brain-computer interface (BCI) systems.

6 citations

Journal ArticleDOI
TL;DR: By analyzing the papers published in authoritative journals in nearly five years, signal processing algorithms of preprocessing, feature extraction and classification modules are discussed in detail and can be considered as a reference for further research.
Abstract: Over past two decades, steady-state evoked potentials (SSVEP)-based brain computer interface (BCI) systems have been extensively developed. As we all know, signal processing algorithms play an important role in this BCI. However, there is no comprehensive review of the latest development of signal processing algorithms for SSVEP-based BCI. By analyzing the papers published in authoritative journals in nearly five years, signal processing algorithms of preprocessing, feature extraction and classification modules are discussed in detail. In addition, other aspects existed in this BCI are mentioned. The following key problems are solved. (1) In recent years, which signal processing algorithms are frequently used in each module? (2) Which signal processing algorithms attract more attention in recent years? (3) Which modules are the key to signal processing in BCI field? This information is very important for choosing the appropriate algorithms, and can also be considered as a reference for further research. Simultaneously, we hope that this work can provide relevant BCI researchers with valuable information about the latest trends of signal processing algorithms for SSVEP-based BCI systems.

6 citations

Journal ArticleDOI
TL;DR: The results reveal that the proposed EPSD spatial filter significantly enhances the performance of target detection and further statistical tests confirm that the EPSD is a potential alternative to the existing SSVEP spatial filters for realizing an efficient BCI system.

4 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the performance robustness of SSVEP-based brain-computer interfaces with respect to the changes in electrode locations for various channel configurations and classification algorithms.
Abstract: There remains an active investigation on elevating the classification accuracy and information transfer rate of brain-computer interfaces based on steady-state visual evoked potential. However, it has often been ignored that the performance of steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can be affected through the minor displacement of the electrodes from their optimal locations in practical applications because of the mislocation of electrodes and/or concurrent use of electroencephalography (EEG) devices with external devices, such as virtual reality headsets. In this study, we evaluated the performance robustness of SSVEP-based BCIs with respect to the changes in electrode locations for various channel configurations and classification algorithms. Our experiments involved 21 participants, where EEG signals were recorded from the scalp electrodes densely attached to the occipital area of the participants. The classification accuracies for all the possible cases of electrode location shifts for various channel configurations (1-3 channels) were calculated using five training-free SSVEP classification algorithms, i.e., the canonical correlation analysis (CCA), extended CCA, filter bank CCA, multivariate synchronization index (MSI), and extended MSI (EMSI). Then, the performances of the BCIs were evaluated using two measures, i.e., the average classification accuracy (ACA) across the electrode shifts and robustness to the electrode shift (RES). Our results showed that the ACA increased with an increase in the number of channels regardless of the algorithm. However, the RES was enhanced with an increase in the number of channels only when MSI and EMSI were employed. While both ACA and RES values for the five algorithms were similar under the single-channel condition, both ACA and RES values for MSI and EMSI were higher than those of the other algorithms under the multichannel (i.e., two or three electrodes) conditions. In addition, EMSI outperformed MSI when comparing the ACA and RES values under the multichannel conditions. In conclusion, our results suggested that the use of multichannel configuration and employment of EMSI could make the performance of SSVEP-based BCIs more robust to the electrode shift from the optimal locations.

3 citations

References
More filters
Journal ArticleDOI
01 Jun 2000
TL;DR: The first international meeting devoted to brain-computer interface research and development is summarized, which focuses on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users.
Abstract: Over the past decade, many laboratories have begun to explore brain-computer interface (BCI) technology as a radically new communication option for those with neuromuscular impairments that prevent them from using conventional augmentative communication methods. BCI's provide these users with communication channels that do not depend on peripheral nerves and muscles. This article summarizes the first international meeting devoted to BCI research and development. Current BCI's use electroencephalographic (EEG) activity recorded at the scalp or single-unit activity recorded from within cortex to control cursor movement, select letters or icons, or operate a neuroprosthesis. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI which recognizes the commands contained in the input and expresses them in device control. Current BCI's have maximum information transfer rates of 5-25 b/min. Achievement of greater speed and accuracy depends on improvements in signal processing, translation algorithms, and user training. These improvements depend on increased interdisciplinary cooperation between neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective methods for evaluating alternative methods. The practical use of BCI technology depends on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users. BCI research and development will also benefit from greater emphasis on peer-reviewed publications, and from adoption of standard venues for presentations and discussion.

2,121 citations

Journal ArticleDOI
TL;DR: An experiment, where ten human subjects were presented flickering light at frequencies from 1 to 100 Hz in 1-Hz steps, and the event-related potentials exhibited steady-state oscillations at all frequencies up to at least 90 Hz, which could be a potential neural basis for gamma oscillations in binding experiments.
Abstract: The individual properties of visual objects, like form or color, are represented in different areas in our visual cortex. In order to perceive one coherent object, its features have to be bound together. This was found to be achieved in cat and monkey brains by temporal correlation of the firing rates of neurons which code the same object. This firing rate is predominantly observed in the gamma frequency range (approx. 30-80 Hz, mainly around 40 Hz). In addition, it has been shown in humans that stimuli which flicker at gamma frequencies are processed faster by our brains than when they flicker at different frequencies. These effects could be due to neural oscillators, which preferably oscillate at certain frequencies, so-called resonance frequencies. It is also known that neurons in visual cortex respond to flickering stimuli at the frequency of the flickering light. If neural oscillators exist with resonance frequencies, they should respond more strongly to stimulation with their resonance frequency. We performed an experiment, where ten human subjects were presented flickering light at frequencies from 1 to 100 Hz in 1-Hz steps. The event-related potentials exhibited steady-state oscillations at all frequencies up to at least 90 Hz. Interestingly, the steady-state potentials exhibited clear resonance phenomena around 10, 20, 40 and 80 Hz. This could be a potential neural basis for gamma oscillations in binding experiments. The pattern of results resembles that of multiunit activity and local field potentials in cat visual cortex.

930 citations

Journal ArticleDOI
TL;DR: The steady-state evoked activity, its properties, and the mechanisms behind SSVEP generation are investigated and future research directions related to basic and applied aspects of SSVEPs are outlined.

898 citations

Journal ArticleDOI
TL;DR: A recognition approach is proposed based on the extracted frequency features for an SSVEP-based brain computer interface (BCI) that were higher than those using a widely used fast Fourier transform (FFT)-based spectrum estimation method.
Abstract: Canonical correlation analysis (CCA) is applied to analyze the frequency components of steady-state visual evoked potentials (SSVEP) in electroencephalogram (EEG). The essence of this method is to extract a narrowband frequency component of SSVEP in EEG. A recognition approach is proposed based on the extracted frequency features for an SSVEP-based brain computer interface (BCI). Recognition Results of the approach were higher than those using a widely used fast Fourier transform (FFT)-based spectrum estimation method

826 citations

Journal ArticleDOI
TL;DR: A brain-computer interface that can help users to input phone numbers based on the steady-state visual evoked potential (SSVEP), which has noninvasive signal recording, little training required for use, and high information transfer rate.
Abstract: This paper presents a brain-computer interface (BCI) that can help users to input phone numbers. The system is based on the steady-state visual evoked potential (SSVEP). Twelve buttons illuminated at different rates were displayed on a computer monitor. The buttons constituted a virtual telephone keypad, representing the ten digits 0-9, BACKSPACE, and ENTER. Users could input phone number by gazing at these buttons. The frequency-coded SSVEP was used to judge which button the user desired. Eight of the thirteen subjects succeeded in ringing the mobile phone using the system. The average transfer rate over all subjects was 27.15 bits/min. The attractive features of the system are noninvasive signal recording, little training required for use, and high information transfer rate. Approaches to improve the performance of the system are discussed.

765 citations