scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Periodic Event triggered Control of Singularly Perturbed systems

TL;DR: In this paper, the authors proposed a periodic event-triggered control of singularly perturbed systems, where state variables are sampled at their natural frequency avoiding oversampling of slow variables.
Abstract: This paper proposes periodic event-triggered control of singularly perturbed systems. The proposed triggering strategy allows periodic evaluation of triggering rule. Continuous state measurements are no longer required, instead, the states are measured periodically and are transmitted to controller only if certain condition based on the system performance is satisfied. Another advantage of this triggering mechanism is that there exists a uniform positive lower bound on the inter-event time which is equal to one sampling period at least. In this work, we use independent event-triggering mechanism for the slow and fast variables of the system. This allows state variables to be sampled at their natural frequency avoiding oversampling of slow variables. The proposed strategy ensures bounded stability of the closed-loop system. Simulation results are included to show the efficacy of the proposed method.
Citations
More filters
01 Jan 2002
TL;DR: In this article, it is shown that Lebesgue sampling gives better performance for some simple systems than traditional Riemann sampling, which is an analog of integration theory and is called event-based sampling.
Abstract: The normal approach to digital control is to sample periodically in time. Using an analog of integration theory we can call this Riemann sampling. Lebesgue sampling or event based sampling is an alternative to Riemann sampling. It means that signals are sampled only when measurements pass certain limits. In this paper it is shown that Lebesgue sampling gives better performance for some simple systems.

77 citations

Proceedings ArticleDOI
01 Jan 1984
TL;DR: In this paper, the design of stabilizing feedback control of singularly perturbed diserete-time systems is decomposed into slow and fast controllers which are combined to form the composite control.
Abstract: The design of stabilizing feedback control of singularly perturbed diserete-time systems is decomposed into the design of slow and fast controllers which are combined to form the composite control. Composite control strategies are developed for the case of single rate measurements (all variables are measured at the same rate) as well as for the case of multirate measurements (slow variables are measured at a rate slower than that of fast variables).

23 citations

References
More filters
Journal ArticleDOI
TL;DR: This note investigates a simple event-triggered scheduler based on the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant and shows how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.
Abstract: In this note, we revisit the problem of scheduling stabilizing control tasks on embedded processors. We start from the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant. This controller has for objective guaranteeing that (control unrelated) software tasks meet their deadlines and that stabilizing control tasks asymptotically stabilize the plant. We investigate a simple event-triggered scheduler based on this feedback paradigm and show how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.

3,695 citations

Book
01 Jan 1986
TL;DR: This SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications.
Abstract: From the Publisher: Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point. Audience Control engineers and graduate students who seek an introduction to singular perturbation methods in control will find this text useful. The book also provides research workers with sketches of problems in the areas of robust, adaptive, stochastic, and nonlinear control. No previous knowledge of singular perturbation techniques is assumed. About the Authors Petar Kokotovic is Director of the Center for Control Engineering and Computation at the University of California, Santa Barbara. Hassan K. Khalil is Professor of Electrical and Computer Engineering at Michigan State University. John O'Reilly is Professor of Electronics and Electrical Engineering at the University of Glasgow, Scotland.

2,446 citations

Journal ArticleDOI
10 Dec 2013
TL;DR: The PETC strategies developed in this paper apply to both static state-feedback and dynamical output-based controllers, as well as to both centralized and decentralized (periodic) event-triggering conditions.
Abstract: Event-triggered control (ETC) is a control strategy that is especially suited for applications where communication resources are scarce. By updating and communicating sensor and actuator data only when needed for stability or performance purposes, ETC is capable of reducing the amount of communications, while still retaining a satisfactory closed-loop performance. In this paper, an ETC strategy is proposed by striking a balance between conventional periodic sampled-data control and ETC, leading to so-called periodic event-triggered control (PETC). In PETC, the event-triggering condition is verified periodically and at every sampling time it is decided whether or not to compute and to transmit new measurements and new control signals. The periodic character of the triggering conditions leads to various implementation benefits, including a minimum inter-event time of (at least) the sampling interval of the event-triggering condition. The PETC strategies developed in this paper apply to both static state-feedback and dynamical output-based controllers, as well as to both centralized and decentralized (periodic) event-triggering conditions. To analyze the stability and the L2-gain properties of the resulting PETC systems, three different approaches will be presented based on 1) impulsive systems, 2) piecewise linear systems, and 3) perturbed linear systems. Moreover, the advantages and disadvantages of each of the three approaches will be discussed and the developed theory will be illustrated using a numerical example.

1,011 citations


"Periodic Event triggered Control of..." refers background in this paper

  • ...PETC has been proposed for linear systems in [7] and for nonlinear systems in [8]....

    [...]

Proceedings ArticleDOI
10 Dec 2002
TL;DR: In this paper, it is shown that Lebesgue sampling gives better performance for some simple systems than traditional Riemann sampling, which is an analog of integration theory and is called event-based sampling.
Abstract: The normal approach to digital control is to sample periodically in time. Using an analog of integration theory we can call this Riemann sampling. Lebesgue sampling or event based sampling is an alternative to Riemann sampling. It means that signals are sampled only when measurements pass certain limits. In this paper it is shown that Lebesgue sampling gives better performance for some simple systems.

961 citations

Journal ArticleDOI
05 Mar 2007
TL;DR: A survey of the emerging field of networked control systems is provided in this article, where the authors present a snapshot assessment of the current state of research in the field, suggest useful future research directions, and provide a broad perspective on recent fundamental results.
Abstract: A current survey of the emerging field of networked control systems is provided. The aim is to introduce the fundamental issues involved in designing successful networked control systems, to provide a snapshot assessment of the current state of research in the field, to suggest useful future research directions, and to provide a broad perspective on recent fundamental results. Reflecting the goals of the Special Issue itself, this paper surveys relevant work from the areas of systems and control, signal processing, detection and estimation, data fusion, and distributed systems. We discuss appropriate network architectures, topics such as coding for robustly stable control in the presence of time-varying channel capacity, channels with fixed versus adaptively variable data width, issues in data rate problems in nonlinear feedback problems, and problems in routing for stability and performance. In surveying current research on networked control systems, we find that recent theoretical advances and target applications are intimately intertwined. The common goal of papers in the Special Issue which follows is to describe key aspects of this relationship. We also aim to provide a bridge between networked control systems and closely related contemporary work dealing with sensor networks and wireless communication protocols

884 citations