scispace - formally typeset
Search or ask a question
Posted Content

Personalized Federated Learning with Gaussian Processes

Idan Achituve1, Aviv Shamsian1, Aviv Navon1, Gal Chechik1, Ethan Fetaya1 
29 Jun 2021-arXiv: Learning-
TL;DR: In this paper, a solution to PFL that is based on Gaussian processes (GPs) with deep kernel learning is presented, where a shared kernel function across all clients, parameterized by a neural network, with a personal GP classifier for each client.
Abstract: Federated learning aims to learn a global model that performs well on client devices with limited cross-client communication. Personalized federated learning (PFL) further extends this setup to handle data heterogeneity between clients by learning personalized models. A key challenge in this setting is to learn effectively across clients even though each client has unique data that is often limited in size. Here we present pFedGP, a solution to PFL that is based on Gaussian processes (GPs) with deep kernel learning. GPs are highly expressive models that work well in the low data regime due to their Bayesian nature. However, applying GPs to PFL raises multiple challenges. Mainly, GPs performance depends heavily on access to a good kernel function, and learning a kernel requires a large training set. Therefore, we propose learning a shared kernel function across all clients, parameterized by a neural network, with a personal GP classifier for each client. We further extend pFedGP to include inducing points using two novel methods, the first helps to improve generalization in the low data regime and the second reduces the computational cost. We derive a PAC-Bayes generalization bound on novel clients and empirically show that it gives non-vacuous guarantees. Extensive experiments on standard PFL benchmarks with CIFAR-10, CIFAR-100, and CINIC-10, and on a new setup of learning under input noise show that pFedGP achieves well-calibrated predictions while significantly outperforming baseline methods, reaching up to 21% in accuracy gain.
Citations
More filters
Posted Content
TL;DR: In this paper, the authors proposed a new learning setup, Inference-Time PFL (IT-PFL), where a model trained on a set of clients, needs to be later evaluated on novel unlabeled clients at inference time.
Abstract: In Federated learning (FL), multiple clients collaborate to learn a model through a central server but keep the data decentralized. Personalized federated learning (PFL) further extends FL to handle data heterogeneity between clients by learning personalized models. In both FL and PFL, all clients participate in the training process and their labeled data is used for training. However, in reality, novel clients may wish to join a prediction service after it has been deployed, obtaining predictions for their own unlabeled data. Here, we defined a new learning setup, Inference-Time PFL (IT-PFL), where a model trained on a set of clients, needs to be later evaluated on novel unlabeled clients at inference time. We propose a novel approach to this problem IT-PFL-HN, based on a hypernetwork module and an encoder module. Specifically, we train an encoder network that learns a representation for a client given its unlabeled data. That client representation is fed to a hypernetwork that generates a personalized model for that client. Evaluated on four benchmark datasets, we find that IT-PFL-HN generalizes better than current FL and PFL methods, especially when the novel client has a large domain shift. We also analyzed the generalization error for the novel client, showing how it can be bounded using results from multi-task learning and domain adaptation. Finally, since novel clients do not contribute their data to training, they can potentially have better control over their data privacy; indeed, we showed analytically and experimentally how novel clients can apply differential privacy to their data.
References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Dissertation
01 Jan 2009
TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Abstract: In this work we describe how to train a multi-layer generative model of natural images. We use a dataset of millions of tiny colour images, described in the next section. This has been attempted by several groups but without success. The models on which we focus are RBMs (Restricted Boltzmann Machines) and DBNs (Deep Belief Networks). These models learn interesting-looking filters, which we show are more useful to a classifier than the raw pixels. We train the classifier on a labeled subset that we have collected and call the CIFAR-10 dataset.

15,005 citations

Book
23 Nov 2005
TL;DR: The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics, and deals with the supervised learning problem for both regression and classification.
Abstract: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

11,357 citations

Proceedings ArticleDOI
Mark Sandler1, Andrew Howard1, Menglong Zhu1, Andrey Zhmoginov1, Liang-Chieh Chen1 
18 Jun 2018
TL;DR: MobileNetV2 as mentioned in this paper is based on an inverted residual structure where the shortcut connections are between the thin bottleneck layers and intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity.
Abstract: In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3. is based on an inverted residual structure where the shortcut connections are between the thin bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on ImageNet [1] classification, COCO object detection [2], VOC image segmentation [3]. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as actual latency, and the number of parameters.

9,381 citations