scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Perspectives on Titanium Science and Technology

TL;DR: In this paper, the complexity and variety of fundamental phenomena in this material system with a focus on phase transformations and mechanical behaviour are discussed. And the challenges that lie ahead in achieving these goals are delineated.
About: This article is published in Acta Materialia.The article was published on 2013-02-01. It has received 1797 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the recent progress on Ti6Al4V fabricated by three mostly developed additive manufacturing techniques-directed energy deposition (DED), selective laser melting (SLM) and electron beam melting (EBM)-is thoroughly investigated and compared.

1,248 citations

Journal ArticleDOI
TL;DR: Various attempts to improve upon these properties like different processing routes, surface modifications have been inculcated in the paper to provide an insight into the extent of research and effort that has been put into developing a highly superior titanium orthopaedic implant.

711 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of the microstructure on the tensile properties of additive manufacturing (AM) of Ti alloys has been investigated. And the authors found that the mechanical anisotropy of the parts was discussed in relation to the crystallographic texture, phase composition and the predominant fracture mechanisms.
Abstract: Recent research on the additive manufacturing (AM) of Ti alloys has shown that the mechanical properties of the parts are affected by the characteristic microstructure that originates from the AM process. To understand the effect of the microstructure on the tensile properties, selective laser melted (SLM) Ti–6Al–4V samples built in three different orientations were tensile tested. The investigated samples were near fully dense, in two distinct conditions, as-built and stress relieved. It was found that the build orientation affects the tensile properties, and in particular the ductility of the samples. The mechanical anisotropy of the parts was discussed in relation to the crystallographic texture, phase composition and the predominant fracture mechanisms. Fractography and electron backscatter diffraction (EBSD) results indicate that the predominant fracture mechanism is intergranular fracture present along the grain boundaries and thus provide and explain the typical fracture surface features observed in fracture AM Ti–6Al–4V.

671 citations

Journal ArticleDOI
TL;DR: In this paper, the results of selective laser melting (SLM) processing of in situ Ti-TiB composites from optimally milled titanium diboride (TiB 2 ) powder were presented.

455 citations

Journal ArticleDOI
TL;DR: In this work, instead of addressing the segregation problems, the segregation was utilized to develop a novel microstructure consisting of a nanometre-grained duplex (α+β) structure and micrometre scale β phase with superior mechanical properties.
Abstract: In β titanium alloys, the β stabilizers segregate easily and considerable effort has been devoted to alleviate/eliminate the segregation. In this work, instead of addressing the segregation problems, the segregation was utilized to develop a novel microstructure consisting of a nanometre-grained duplex (α+β) structure and micrometre scale β phase with superior mechanical properties. An as-cast Ti-9Mo-6W alloy exhibited segregation of Mo and W at the tens of micrometre scale. This was subjected to cold rolling and flash annealing at 820 oC for 2 and 5 mins. The solidification segregation of Mo and W leads to a locally different microstructure after cold rolling (i.e., nanostructured β phase in the regions rich in Mo and W and plate-like martensite and β phase in regions relatively poor in Mo and W), which play a decisive role in the formation of the heterogeneous microstructure. Tensile tests showed that this alloy exhibited a superior combination of high yield strength (692 MPa), high tensile strength (1115 MPa), high work hardening rate and large uniform elongation (33.5%). More importantly, the new technique proposed in this work could be potentially applicable to other alloy systems with segregation problems.

431 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of deformation twinning on the mechanical response of high-purity α-titanium deformed at room temperature was investigated and it was shown that the newly formed deformation twins were harder than the matrix.
Abstract: Novel experiments were conducted to elucidate the effect of deformation twinning on the mechanical response of high-purity α-titanium deformed at room temperature. Orientation-imaging microscopy (OIM), microhardness, and nanohardness evaluations were employed in conjunction with optical microscopy and quasi-static compression testing to obtain insight into the deformation mechanisms. Hardness measurements revealed that the newly formed deformation twins were harder than the matrix. This observation is perhaps the first experimental evidence for the Basinski mechanism for hardening associated with twinning, arising from the transition of glissile dislocations to a sessile configuration upon the lattice reorientation by twinning shear. This work also provided direct evidence for two competing effects of deformation twinning on the overall stress-strain response: (1) hardening via both a reduction of the effective slip length (Hall-Petch effect) and an increase in the hardness of twinned regions (Basinski mechanism) and (2) softening due to the lattice reorientation of the twinned regions.

224 citations

Journal ArticleDOI
TL;DR: In this article, a high-resolution electron backscatter diffraction technique was employed to investigate microstructure evolution during warm working of Ti-6Al-4V with a colony-α micro-structure.

208 citations

Journal ArticleDOI
TL;DR: In this paper, a model for quasi-cleavage facet formation in titanium alloys is introduced, and the life decrement in large components can be related to variations in prior beta grain size.

205 citations

Journal ArticleDOI
TL;DR: In this paper, the deformation properties of a Ti-6Al-4V alloy under fatigue loading at room temperature are studied using a three-dimensional crystal plasticity constitutive model.

203 citations

Journal ArticleDOI
TL;DR: In this paper, a three-dimensional microstructure-based constitutive model for monotonic and cyclic deformation of duplex Ti-6Al-4V is developed and implemented.

198 citations