scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pharmaceutical Applications of Hot-Melt Extrusion: Part I

TL;DR: The pharmaceutical applications of hot-melt extrusion, including equipment, principles of operation, and process technology, are reviewed and the physicochemical properties of the resultant dosage forms are described.
Abstract: Interest in hot-melt extrusion techniques for pharmaceutical applications is growing rapidly with well over 100 papers published in the pharmaceutical scientific literature in the last 12 years. Hot-melt extrusion (HME) has been a widely applied technique in the plastics industry and has been demonstrated recently to be a viable method to prepare several types of dosage forms and drug delivery systems. Hot-melt extruded dosage forms are complex mixtures of active medicaments, functional excipients, and processing aids. HME also offers several advantages over traditional pharmaceutical processing techniques including the absence of solvents, few processing steps, continuous operation, and the possibility of the formation of solid dispersions and improved bioavailability. This article, Part I, reviews the pharmaceutical applications of hot-melt extrusion, including equipment, principles of operation, and process technology. The raw materials processed using this technique are also detailed and the physicochemical properties of the resultant dosage forms are described. Part II of this review will focus on various applications of HME in drug delivery such as granules, pellets, immediate and modified release tablets, transmucosal and transdermal systems, and implants.
Citations
More filters
Journal ArticleDOI
W. De Jaeghere1, T. De Beer1, J. Van Bocxlaer1, J.P. Remon1, Chris Vervaet1 
TL;DR: The in vitro and in vivo dug release of plasticized PVOH was examined; whereas the CEL/PVO/sorbitol system was able to maintain supersaturation during in vitro dissolution (0.1N HCl) compared to Celebrex(®), the in vivo pharmacokinetic parameters were highly comparable.

55 citations


Cites background from "Pharmaceutical Applications of Hot-..."

  • ...Several water-soluble polymeric carriers suitable for HME applications have been identified (e.g. hydroxypropyl cellulose, polyethylene oxide, poly(vinyl pyrrolidone) (Crowley et al., 2007), polyvinyl alcohol (Dawson and Stevens, 2002))....

    [...]

Journal ArticleDOI
TL;DR: A multivariate supervisory quality control strategy was developed for the process to monitor the hot melt extrusion process on the basis of principal component analysis (PCA) of the NIR spectra.
Abstract: Continuous pharmaceutical manufacturing processes are of increased industrial interest and require uni- and multivariate Process Analytical Technology (PAT) data from different unit operations to be aligned and explored within the Quality by Design (QbD) context. Real-time pharmaceutical process verification is accomplished by monitoring univariate (temperature, pressure, etc.) and multivariate (spectra, images, etc.) process parameters and quality attributes, to provide an accurate state estimation of the process, required for advanced control strategies. This paper describes the development and use of such tools for a continuous hot melt extrusion (HME) process, monitored with generic sensors and a near-infrared (NIR) spectrometer in real-time, using SIPAT (Siemens platform to collect, display, and extract process information) and additional components developed as needed. The IT architecture of such a monitoring procedure based on uni- and multivariate sensor systems and their integration in SIPAT is shown. SIPAT aligned spectra from the extrudate (in the die section) with univariate measurements (screw speed, barrel temperatures, material pressure, etc.). A multivariate supervisory quality control strategy was developed for the process to monitor the hot melt extrusion process on the basis of principal component analysis (PCA) of the NIR spectra. Monitoring the first principal component and the time-aligned reference feed rate enables the determination of the residence time in real-time.

54 citations


Cites background from "Pharmaceutical Applications of Hot-..."

  • ...Subsequent downstream processes may include a tablet press, followed by coating to produce tablets or filling of the pellets into capsules [9,14,15]....

    [...]

Journal ArticleDOI
TL;DR: The dissolution studies confirmed that the prepared nano-extrudates increased the solubility of nano-crystalline phenytoin, regardless of the polymer, and demonstrates that NANEX represents a promising new platform technology in the design of novel drug delivery systems to improve drug performance.

54 citations

Journal ArticleDOI
TL;DR: Gliclazide amorphous solid dispersion with ˜95% drug recovery was achieved and the ability to process thermally labile drugs and polymers using hot‐melt extrusion will significantly expand the possible applications of this manufacturing process.

54 citations


Cites background from "Pharmaceutical Applications of Hot-..."

  • ...Moreover, mechanical energy input is also supplied by the machine motor, and it is delivered through the interaction of the screw elements and the extruded materials [11]....

    [...]

Journal ArticleDOI
TL;DR: S-SMEDDS were successfully prepared by HME, and an HMPCAS matrix was able to avoid microemulsion reconstitution and retain drug release in pH 1.2 (12.97%-25.54%).

53 citations

References
More filters
Book
01 Jan 1995
TL;DR: The authors provided the basic building blocks of polymer science and engineering by coverage of fundamental polymer chemistry and materials topics given in Chapters 1 through 7 and provided information on the exciting new materialsnow available and the emerging areas of technological growth that could motivate a new generation of scientists and engineers.
Abstract: From the Book: PREFACE: At least dozens of good introductory textbooks on polymer science and engineering are now available. Why then has yet another book been written? The decision was based on my belief that none of the available texts fully addresses the needs of students in chemical engineering. It is not that chemical engineers are a rare breed, but rather that they have special training in areas of thermodynamics and transport phenomena that is seldom challenged by texts designed primarily for students of chemistry or materials science. This has been a frustration of mine and of many of my students for the past 15 years during which I have taught an introductory course, Polymer Technology, to some 350 chemical engineering seniors. In response to this perceived need, I had written nine review articles that appeared in the SPE publication Plastics Engineering from 1982 to 1984. These served as hard copy for my students to supplement their classroom notes but fell short of a complete solution. In writing this text, it was my objective to first provide the basic building blocks of polymer science and engineering by coverage of fundamental polymer chemistry and materials topics given in Chapters 1 through 7. As a supplement to the traditional coverage of polymer thermodynamics, extensive discussion of phase equilibria, equation-of- state theories, and UNIFAC has been included in Chapter 3. Coverage of rheology, including the use of constitutive equations and the modeling of simple flow geometries, and the fundamentals of polymer processing operations are given in Chapter 11. Finally, I wanted to provide information on the exciting new materialsnowavailable and the emerging areas of technological growth that could motivate a new generation of scientists and engineers. For this reason, engineering and specialty polymers are surveyed in Chapter 10 and important new applications for polymers in separations (membrane separations), electronics (conducting polymers), biotechnology (controlled drug release), and other specialized areas of engineering are given in Chapter 12. In all, this has been an ambitious undertaking and I hope that I have succeeded in at least some of these goals. Although the intended audience for this text is advanced undergraduates and graduate students in chemical engineering, the coverage of polymer science fundamentals (Chapters 1 through 7) should be suitable for a semester course in a materials science or chemistry curriculum. Chapters 8 through 10 intended as survey chapters of the principal categories of polymers commodity thermoplastics and fibers, network polymers (elastomers and thermosets), and engineering and specialty polymers may be included to supplement and reinforce the material presented in the chapters on fundamentals and should serve as a useful reference source for the practicing scientist or engineer in the plastics industry.

981 citations

Journal ArticleDOI
TL;DR: A comparison of the carbonyl stretching region of γ indomethacin, known to form carboxylic acid dimers, with that of amorphous indometHacin indicated that the amorphously phase exists predominantly as dimers.
Abstract: Purpose. To study the molecular structure of indomethacin-PVP amorphous solid dispersions and identify any specific interactions between the components using vibrational spectroscopy.

904 citations

Book
01 Jan 1988
TL;DR: In this article, the elastic properties of polymeric solids and their properties of rubber are discussed. But they focus on the structure of the molecule rather than the properties of the solids.
Abstract: Introduction. 1: Structure of the molecule. 2: Structure of polymeric solids. 3: The elastic properties of rubber. 4: Viscoelasticity. 5: Yield and fracture. 6: Reinforced polymers. 7: Forming. 8: Design. Further reading, Answers, Index

790 citations

Journal ArticleDOI
TL;DR: Improved bioavailability was achieved again demonstrating the value of the technology as a drug delivery tool, with particular advantages over solvent processes like co-precipitation.

790 citations