scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pharmaceutical Applications of Hot-Melt Extrusion: Part I

TL;DR: The pharmaceutical applications of hot-melt extrusion, including equipment, principles of operation, and process technology, are reviewed and the physicochemical properties of the resultant dosage forms are described.
Abstract: Interest in hot-melt extrusion techniques for pharmaceutical applications is growing rapidly with well over 100 papers published in the pharmaceutical scientific literature in the last 12 years. Hot-melt extrusion (HME) has been a widely applied technique in the plastics industry and has been demonstrated recently to be a viable method to prepare several types of dosage forms and drug delivery systems. Hot-melt extruded dosage forms are complex mixtures of active medicaments, functional excipients, and processing aids. HME also offers several advantages over traditional pharmaceutical processing techniques including the absence of solvents, few processing steps, continuous operation, and the possibility of the formation of solid dispersions and improved bioavailability. This article, Part I, reviews the pharmaceutical applications of hot-melt extrusion, including equipment, principles of operation, and process technology. The raw materials processed using this technique are also detailed and the physicochemical properties of the resultant dosage forms are described. Part II of this review will focus on various applications of HME in drug delivery such as granules, pellets, immediate and modified release tablets, transmucosal and transdermal systems, and implants.
Citations
More filters
Journal ArticleDOI
TL;DR: The working principle of Hot Melt Extrusion and Fused Deposition Modelling is reviewed, and how these two technologies can be combined for the use of advanced pharmaceutical applications are reviewed.
Abstract: Three-dimensional printing, also known as additive manufacturing, is a fabrication process whereby a 3D object is created layer-by-layer by depositing a feedstock material such as thermoplastic polymer. The 3D printing technology has been widely used for rapid prototyping and its interest as a fabrication method has grown significantly across many disciplines. The most common 3D printing technology is called the Fused Deposition Modelling (FDM) which utilises thermoplastic filaments as a starting material, then extrudes the material in sequential layers above its melting temperature to create a 3D object. These filaments can be fabricated using the Hot-Melt Extrusion (HME) technology. The advantage of using HME to manufacture polymer filaments for FDM printing is that a homogenous solid dispersion of two or more pharmaceutical excipients i.e., polymers can be made and a thermostable drug can even be introduced in the filament composition, which is otherwise impractical with any other techniques. By introducing HME techniques for 3D printing filament development can improve the bioavailability and solubility of drugs as well as sustain the drug release for a prolonged period of time. The latter is of particular interest when medical implants are considered via 3D printing. In recent years, there has been increasing interest in implementing a continuous manufacturing method on pharmaceutical products development and manufacture, in order to ensure high quality and efficacy with less batch-to-batch variations of the pharmaceutical products. The HME and FDM technology can be combined into one integrated continuous processing platform. This article reviews the working principle of Hot Melt Extrusion and Fused Deposition Modelling, and how these two technologies can be combined for the use of advanced pharmaceutical applications.

198 citations


Cites background from "Pharmaceutical Applications of Hot-..."

  • ...The molten material will then be pumped through a die, which will give a fixed shape that forms the extrudate [18]....

    [...]

  • ...The mo ten mat rial will then be pumped through a die, which will give a fixed shape that forms the extrudate [18]....

    [...]

  • ...Occasionally, the single screw extruder can also be starve fed, where a feed system sets the mass flow rate and the output rate is independent of the screw speed [18]....

    [...]

  • ...The counter-rotating screws can produce very high shear forces as the materials are squeezed into the gaps between the two screws [18]....

    [...]

  • ...In the single screw extruder, there is only one screw in the extruder, which is used for feeding, melting, devolatilising and pumping [18]....

    [...]

Journal ArticleDOI
TL;DR: A single-step, scalable, solvent-free, continuous cocrystallization and agglomeration technology was developed using HME, offering flexibility for tailoring the cocrystal purity.
Abstract: To explore hot melt extrusion (HME) as a scalable, solvent-free, continuous technology to design cocrystals in agglomerated form. Cocrystal agglomerates of ibuprofen and nicotinamide in 1:1 ratio were produced using HME at different barrel temperature profiles, screw speeds, and screw configurations. Product was characterized for crystallinity by XRPD and DSC, while the morphology was determined by SEM. Dissolution rate and tabletting properties were compared with ibuprofen. Process parameters significantly affected the extent of cocrystallization which improved with temperature, applied shear and residence time. Processing above eutectic point was required for cocrystallization to occur, and it improved with mixing intensity by changing screw configuration. Product was in the form of spherical agglomerates, which showed directly compressible nature with enhanced dissolution rate compared to ibuprofen. This marks an important advantage over the conventional techniques, as it negates the need for further size modification steps. A single-step, scalable, solvent-free, continuous cocrystallization and agglomeration technology was developed using HME, offering flexibility for tailoring the cocrystal purity. HME being an established technology readily addresses the regulatory demand of quality by design (QbD) and process analytical technology (PAT), offering high potential for pharmaceuticals.

189 citations


Cites methods from "Pharmaceutical Applications of Hot-..."

  • ...HME is a widely used processing technology in the polymer and food industries and has been recently demonstrated to be a viable method to prepare several types of dosage forms and drug delivery systems (26, 27)....

    [...]

Journal ArticleDOI
TL;DR: The range of HME applications for pharmaceutical dosage forms, such as tablets, capsules, films and implants for drug delivery through oral, transdermal, transmucosal, transungual, as well as other routes of administration are reviewed.
Abstract: In today's pharmaceutical arena, it is estimated that more than 40% of new chemical entities produced during drug discovery efforts exhibit poor solubility characteristics. However, over the last decade hot-melt extrusion (HME) has emerged as a powerful processing technology for drug delivery and has opened the door to a host of molecules previously considered unviable as drugs. HME is considered to be an efficient technique in developing solid molecular dispersions and has been demonstrated to provide sustained, modified and targeted drug delivery resulting in improved bioavailability. This article reviews the range of HME applications for pharmaceutical dosage forms, such as tablets, capsules, films and implants for drug delivery through oral, transdermal, transmucosal, transungual, as well as other routes of administration. Interest in HME as a pharmaceutical process continues to grow and the potential of automation and reduction of capital investment and labor costs have made this technique worthy of consideration as a drug delivery solution.

188 citations


Cites background or methods from "Pharmaceutical Applications of Hot-..."

  • ...In the last 15 years, over 150 research papers and many reviews [1-5] have been published on the subject....

    [...]

  • ...For a more detailed discussion on extruder types and designs, including processing, readers are referred to a recent publication on the subject [4] ....

    [...]

  • ...The stability of such extrudates can be assessed by thermo-analytical techniques such as hot stage microscopy, differential scanning calorimetry, thermogravimetric analysis, as well as non-thermal techniques such as scanning electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance spectroscopy and high performance liquid chromatography [4] ....

    [...]

Patent
15 Jan 2010
TL;DR: In this paper, compounds which inhibit the activity of anti-apoptotic Bcl-2 proteins, compositions containing the compounds and methods of treating diseases during which is expressed anti-APOPotic BCL-2 protein.
Abstract: Disclosed are compounds which inhibit the activity of anti-apoptotic Bcl-2 proteins, compositions containing the compounds and methods of treating diseases during which is expressed anti-apoptotic Bcl-2 protein.

175 citations

Journal ArticleDOI
TL;DR: This review covers literature which states that the dissolution enhancement of SDs is based on the fact that drugs in the nanoscale range, or in amorphous phase, dissolve faster and to a greater extent than micronized drug particles, which is in accordance to the Noyes–Whitney equation.
Abstract: Introduction: In recent years, the number of active pharmaceutical ingredients with high therapeutic impact, but very low water solubility, has increased significantly. Thus, a great challenge for pharmaceutical technology is to create new formulations and efficient drug-delivery systems to overcome these dissolution problems. Areas covered: Drug formulation in solid dispersions (SDs) is one of the most commonly used techniques for the dissolution rate enhancement of poorly water-soluble drugs. Generally, SDs can be defined as a dispersion of active ingredients in molecular, amorphous and/or microcrystalline forms into an inert carrier. This review covers literature which states that the dissolution enhancement of SDs is based on the fact that drugs in the nanoscale range, or in amorphous phase, dissolve faster and to a greater extent than micronized drug particles. This is in accordance to the Noyes–Whitney equation, while the wetting properties of the used polymer may also play an important role. Expert...

173 citations


Cites background from "Pharmaceutical Applications of Hot-..."

  • ...Researches on new SDs and the related fabrication processes have been widely reported in literature during the past several decades [19-21], and today a lot of SD products are marketed: Kaletra (Abbott), Intelence (Tibotec), Certican (Novartis), Isoptin SR-E (Abbott), Nivadil and Prograf (Fujisawa Pharmaceutical Co....

    [...]

References
More filters
Book
01 Jan 1995
TL;DR: The authors provided the basic building blocks of polymer science and engineering by coverage of fundamental polymer chemistry and materials topics given in Chapters 1 through 7 and provided information on the exciting new materialsnow available and the emerging areas of technological growth that could motivate a new generation of scientists and engineers.
Abstract: From the Book: PREFACE: At least dozens of good introductory textbooks on polymer science and engineering are now available. Why then has yet another book been written? The decision was based on my belief that none of the available texts fully addresses the needs of students in chemical engineering. It is not that chemical engineers are a rare breed, but rather that they have special training in areas of thermodynamics and transport phenomena that is seldom challenged by texts designed primarily for students of chemistry or materials science. This has been a frustration of mine and of many of my students for the past 15 years during which I have taught an introductory course, Polymer Technology, to some 350 chemical engineering seniors. In response to this perceived need, I had written nine review articles that appeared in the SPE publication Plastics Engineering from 1982 to 1984. These served as hard copy for my students to supplement their classroom notes but fell short of a complete solution. In writing this text, it was my objective to first provide the basic building blocks of polymer science and engineering by coverage of fundamental polymer chemistry and materials topics given in Chapters 1 through 7. As a supplement to the traditional coverage of polymer thermodynamics, extensive discussion of phase equilibria, equation-of- state theories, and UNIFAC has been included in Chapter 3. Coverage of rheology, including the use of constitutive equations and the modeling of simple flow geometries, and the fundamentals of polymer processing operations are given in Chapter 11. Finally, I wanted to provide information on the exciting new materialsnowavailable and the emerging areas of technological growth that could motivate a new generation of scientists and engineers. For this reason, engineering and specialty polymers are surveyed in Chapter 10 and important new applications for polymers in separations (membrane separations), electronics (conducting polymers), biotechnology (controlled drug release), and other specialized areas of engineering are given in Chapter 12. In all, this has been an ambitious undertaking and I hope that I have succeeded in at least some of these goals. Although the intended audience for this text is advanced undergraduates and graduate students in chemical engineering, the coverage of polymer science fundamentals (Chapters 1 through 7) should be suitable for a semester course in a materials science or chemistry curriculum. Chapters 8 through 10 intended as survey chapters of the principal categories of polymers commodity thermoplastics and fibers, network polymers (elastomers and thermosets), and engineering and specialty polymers may be included to supplement and reinforce the material presented in the chapters on fundamentals and should serve as a useful reference source for the practicing scientist or engineer in the plastics industry.

981 citations

Journal ArticleDOI
TL;DR: A comparison of the carbonyl stretching region of γ indomethacin, known to form carboxylic acid dimers, with that of amorphous indometHacin indicated that the amorphously phase exists predominantly as dimers.
Abstract: Purpose. To study the molecular structure of indomethacin-PVP amorphous solid dispersions and identify any specific interactions between the components using vibrational spectroscopy.

904 citations

Book
01 Jan 1988
TL;DR: In this article, the elastic properties of polymeric solids and their properties of rubber are discussed. But they focus on the structure of the molecule rather than the properties of the solids.
Abstract: Introduction. 1: Structure of the molecule. 2: Structure of polymeric solids. 3: The elastic properties of rubber. 4: Viscoelasticity. 5: Yield and fracture. 6: Reinforced polymers. 7: Forming. 8: Design. Further reading, Answers, Index

790 citations

Journal ArticleDOI
TL;DR: Improved bioavailability was achieved again demonstrating the value of the technology as a drug delivery tool, with particular advantages over solvent processes like co-precipitation.

790 citations