scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pharmaceutical Applications of Hot-Melt Extrusion: Part I

TL;DR: The pharmaceutical applications of hot-melt extrusion, including equipment, principles of operation, and process technology, are reviewed and the physicochemical properties of the resultant dosage forms are described.
Abstract: Interest in hot-melt extrusion techniques for pharmaceutical applications is growing rapidly with well over 100 papers published in the pharmaceutical scientific literature in the last 12 years. Hot-melt extrusion (HME) has been a widely applied technique in the plastics industry and has been demonstrated recently to be a viable method to prepare several types of dosage forms and drug delivery systems. Hot-melt extruded dosage forms are complex mixtures of active medicaments, functional excipients, and processing aids. HME also offers several advantages over traditional pharmaceutical processing techniques including the absence of solvents, few processing steps, continuous operation, and the possibility of the formation of solid dispersions and improved bioavailability. This article, Part I, reviews the pharmaceutical applications of hot-melt extrusion, including equipment, principles of operation, and process technology. The raw materials processed using this technique are also detailed and the physicochemical properties of the resultant dosage forms are described. Part II of this review will focus on various applications of HME in drug delivery such as granules, pellets, immediate and modified release tablets, transmucosal and transdermal systems, and implants.
Citations
More filters
Journal ArticleDOI
TL;DR: The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology where required.
Abstract: Drugs with low water solubility are predisposed to low and variable oral bioavailability and, therefore, to variability in clinical response. Despite significant efforts to "design in" acceptable developability properties (including aqueous solubility) during lead optimization, approximately 40% of currently marketed compounds and most current drug development candidates remain poorly water-soluble. The fact that so many drug candidates of this type are advanced into development and clinical assessment is testament to an increasingly sophisticated understanding of the approaches that can be taken to promote apparent solubility in the gastrointestinal tract and to support drug exposure after oral administration. Here we provide a detailed commentary on the major challenges to the progression of a poorly water-soluble lead or development candidate and review the approaches and strategies that can be taken to facilitate compound progression. In particular, we address the fundamental principles that underpin the use of strategies, including pH adjustment and salt-form selection, polymorphs, cocrystals, cosolvents, surfactants, cyclodextrins, particle size reduction, amorphous solid dispersions, and lipid-based formulations. In each case, the theoretical basis for utility is described along with a detailed review of recent advances in the field. The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology (e.g., solid dispersions, lipid-based formulations, or salt forms) where required.

1,201 citations


Cites background from "Pharmaceutical Applications of Hot-..."

  • ...The mixture is subsequently forced through a die to produce an extrudate of uniform shape (Crowley et al., 2007)....

    [...]

  • ...More recently, hot-melt extrusion (HME) has grown in popularity as it appears to address many of the limitations of simple fusion methods (Breitenbach, 2002; Crowley et al., 2007; Repka et al., 2007)....

    [...]

Journal ArticleDOI
TL;DR: Critical aspects and recent advances in formulation, preparation and characterization of solid dispersions as well as in-depth pharmaceutical solutions to overcome some problems and issues that limit the development and marketability of solid dispersion products are reviewed.

510 citations

Journal ArticleDOI
TL;DR: This work has demonstrated the potential of 3DP to manufacture tablet shapes of different geometries, many of which would be challenging to manufacture by powder compaction.

494 citations


Cites methods from "Pharmaceutical Applications of Hot-..."

  • ...Several research groups have demonstrated HME processes as a viable method to prepare a wide range of accepted pharmaceutical drug delivery systems, including granules, pellets, transdermal patches, transmucosal films systems and implants (Breitenbach, 2002; Crowley et al., 2007; Fonteyne et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: This review will consider the literature that describes the manufacture and characterization of mucoadhesive buccal films and hot-melt extrusion has been explored as an alternative manufacturing process and has yielded promising results.

381 citations


Cites methods from "Pharmaceutical Applications of Hot-..."

  • ...Hot-melt extrusion has been used for the manufacture of controlled-release matrix tablets, pellets, and granules [84], as well as orally disintegrating films [85]....

    [...]

Journal ArticleDOI
TL;DR: The study confirms the potential of 3D printing to fabricate multiple-drug containing devices with specialized design configurations and unique drug release characteristics, which would not otherwise be possible using conventional manufacturing methods.
Abstract: Three dimensional printing (3D printing) was used to fabricate novel oral drug delivery devices with specialized design configurations. Each device was loaded with multiple actives, with the intent of applying this process to the production of personalized medicines tailored at the point of dispensing or use. A filament extruder was used to obtain drug-loaded--paracetamol (acetaminophen) or caffeine--filaments of poly(vinyl alcohol) with characteristics suitable for use in fused-deposition modeling 3D printing. A multinozzle 3D printer enabled fabrication of capsule-shaped solid devices containing the drug with different internal structures. The design configurations included a multilayer device, with each layer containing drug, whose identity was different to the drug in the adjacent layers, and a two-compartment device comprising a caplet embedded within a larger caplet (DuoCaplet), with each compartment containing a different drug. Raman spectroscopy was used to collect 2-dimensional hyper spectral arrays across the entire surface of the devices. Processing of the arrays using direct classical least-squares component matching to produce false color representations of distribution of the drugs was used. This clearly showed a definitive separation between the drug layers of paracetamol and caffeine. Drug release tests in biorelevant bicarbonate media showed unique drug release profiles dependent on the macrostructure of the devices. In the case of the multilayer devices, release of both paracetamol and caffeine was simultaneous and independent of drug solubility. With the DuoCaplet design, it was possible to engineer either rapid drug release or delayed release by selecting the site of incorporation of the drug in the device; the lag-time for release from the internal compartment was dependent on the characteristics of the external layer. The study confirms the potential of 3D printing to fabricate multiple-drug containing devices with specialized design configurations and unique drug release characteristics, which would not otherwise be possible using conventional manufacturing methods.

359 citations

References
More filters
Journal ArticleDOI
TL;DR: The present findings suggest melt-adsorption is a useful technique for improving solubility and bioavailability of poorly water-soluble drugs.

93 citations

Journal ArticleDOI
TL;DR: The results suggest that proper selection of rate-controlling agents based on their physicochemical properties (such as swelling ability and solubility) is important in designing WMGs with desired dissolution profiles.

93 citations


"Pharmaceutical Applications of Hot-..." refers methods in this paper

  • ...prepared controlled release matrices containing diclofenac as a model drug by hot-melt extrusion (Miyagawa et al., 1996; Miyagawa et al., 1999; Sato et al., 1997)....

    [...]

Journal ArticleDOI
Shaul M. Aharoni1
TL;DR: In this article, a large number of experimental results in the literature support and illuminate a model of behavior of chains and chain segments in the amorphous phase of semicrystalline polymers connecting the elevation of the glass transition temperature above its normal value to several kinds of motional restrictions imposed on the chains and parts thereof.
Abstract: A large number of experimental results in the literature support and illuminate a model of behavior of chains and chain segments in the amorphous phase of semicrystalline polymers connecting the elevation of the glass transition temperature (Tg) above its normal value to several kinds of motional restrictions imposed on the chains and parts thereof. Accordingly, polymer chain, chain-segment and chain-fragment motions of all kinds comprise one or more torsions around main-chain bonds from one stable conformation to another, known as rotational isomerizations. When impediments are placed in front of thermal fluctuations and larger transversal and longitudinal motions of polymer chains, segments and shorter fragments in the amorphous phase, and the motions are thus restricted, the glass transition temperature is elevated relative to that of the same amorphous phase in the bulk under normal conditions. The obstructions may prevent either the onset of rotational isomerizations or of their completion once started. The completion of the torsional isomerizations and larger motions may be prevented by eliminating the free spaces necessary to accommodate the volumes of the interconverting chain fragments and segments even when they move in concert, or by preventing the creation of such free spaces. Another way to hinder the completion of such motions is by the introduction into the system of many rigid walls and other interfaces with strong attractive interactions with the polymer, that by geometrical constraints and attractive interactions suppress the rotational and larger motions and prevent their completion. Elimination of the necessary free volume is achievable by the application of compressive pressure, while the introduction of rigid attractive walls may be accomplished by the incorporation of crystallites, as in semicrystalline polymers, or by the addition of rigid finely comminuted foreign additives with very large surface areas or confining voids with high tortuosity. It is believed that motional restrictions imposed on the amorphous phase by the growth faces of polymer crystallites, especially in oriented semicrystalline polymers, are more effective than the restrictions imposed by the fold surfaces of these crystallites. The prevention of the onset of rotational isomerizations and larger motions may be achieved by stretching the polymer chains and chain segments in the amorphous phase and, by one means or another, pinning down the taut chains such that essentially all their rotational isomers are in the trans conformation: they cannot interconvert to the gauche conformation since it requires the chain’s end-to-end distance to decrease. Parallel alignment of relatively taut chain-segments may impose additional geometrical restrictions on both the onset and completion of rotational isomeric torsions and, of course, on longer-range motions. In all cases, the Tg of the motionally constrained parts of the amorphous phase, especially in semicrystalline polymers, is expected to rise. It is likely that the characteristic length associated with transversal motions and their suppression is Rc, the spatial distance between entanglements, which is of the same size scale, and may be the same as the tube diameter of the reptation model. Special emphasis was placed in this work on the semicrystalline polymers poly (ϵ-caprolactam) (nylon-6) and poly (ethylene terephthalate) (PET). © 1998 John Wiley & Sons, Ltd.

92 citations

Journal ArticleDOI
TL;DR: The results of DSC and XRD indicated that the solid structure of the extrudates corresponded to that of a physical mixture of the components, hence there had been no change in the physical form of the drug induced by extrusion.

90 citations


"Pharmaceutical Applications of Hot-..." refers methods in this paper

  • ...utilized a ram extrusion technique to prepare rapid release dosage forms with uniform shape and density (Perissutti et al., 2002)....

    [...]

Journal ArticleDOI
TL;DR: Water-soluble polymers were demonstrated to be efficient release rate modifiers for this system and the release rate was shown to be dependent on the granule size, drug particle size, and drug loading in the tablets.
Abstract: The objectives of this study were to investigate the properties of poly(vinyl acetate) (PVAc) as a retardant polymer and to study the drug release mechanism of theophylline from matrix tablets prepared by hot-melt extrusion. A physical mixture of drug, polymer, and drug release modifiers was fed into the equipment and heated inside the barrel of the extruder. The cylindrical extrudates were either cut into tablets or ground into granules and compressed with other excipients into tablets. Due to the low glass transition temperature of the PVAc, the melt extrusion process was conducted at approximately 70°C. Theophylline was used as the model drug in this study. Theophylline was present in the extrudate in its crystalline form and was released from the tablets by diffusion. The Higuchi diffusion model and percolation theories were applied to the dissolution data to explain the drug release properties of the matrix systems. The release rate was shown to be dependent on the granule size, drug particle size, a...

88 citations