scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pharmaceutical Applications of Hot-Melt Extrusion: Part I

TL;DR: The pharmaceutical applications of hot-melt extrusion, including equipment, principles of operation, and process technology, are reviewed and the physicochemical properties of the resultant dosage forms are described.
Abstract: Interest in hot-melt extrusion techniques for pharmaceutical applications is growing rapidly with well over 100 papers published in the pharmaceutical scientific literature in the last 12 years. Hot-melt extrusion (HME) has been a widely applied technique in the plastics industry and has been demonstrated recently to be a viable method to prepare several types of dosage forms and drug delivery systems. Hot-melt extruded dosage forms are complex mixtures of active medicaments, functional excipients, and processing aids. HME also offers several advantages over traditional pharmaceutical processing techniques including the absence of solvents, few processing steps, continuous operation, and the possibility of the formation of solid dispersions and improved bioavailability. This article, Part I, reviews the pharmaceutical applications of hot-melt extrusion, including equipment, principles of operation, and process technology. The raw materials processed using this technique are also detailed and the physicochemical properties of the resultant dosage forms are described. Part II of this review will focus on various applications of HME in drug delivery such as granules, pellets, immediate and modified release tablets, transmucosal and transdermal systems, and implants.
Citations
More filters
Journal ArticleDOI
TL;DR: The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology where required.
Abstract: Drugs with low water solubility are predisposed to low and variable oral bioavailability and, therefore, to variability in clinical response. Despite significant efforts to "design in" acceptable developability properties (including aqueous solubility) during lead optimization, approximately 40% of currently marketed compounds and most current drug development candidates remain poorly water-soluble. The fact that so many drug candidates of this type are advanced into development and clinical assessment is testament to an increasingly sophisticated understanding of the approaches that can be taken to promote apparent solubility in the gastrointestinal tract and to support drug exposure after oral administration. Here we provide a detailed commentary on the major challenges to the progression of a poorly water-soluble lead or development candidate and review the approaches and strategies that can be taken to facilitate compound progression. In particular, we address the fundamental principles that underpin the use of strategies, including pH adjustment and salt-form selection, polymorphs, cocrystals, cosolvents, surfactants, cyclodextrins, particle size reduction, amorphous solid dispersions, and lipid-based formulations. In each case, the theoretical basis for utility is described along with a detailed review of recent advances in the field. The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology (e.g., solid dispersions, lipid-based formulations, or salt forms) where required.

1,201 citations


Cites background from "Pharmaceutical Applications of Hot-..."

  • ...The mixture is subsequently forced through a die to produce an extrudate of uniform shape (Crowley et al., 2007)....

    [...]

  • ...More recently, hot-melt extrusion (HME) has grown in popularity as it appears to address many of the limitations of simple fusion methods (Breitenbach, 2002; Crowley et al., 2007; Repka et al., 2007)....

    [...]

Journal ArticleDOI
TL;DR: Critical aspects and recent advances in formulation, preparation and characterization of solid dispersions as well as in-depth pharmaceutical solutions to overcome some problems and issues that limit the development and marketability of solid dispersion products are reviewed.

510 citations

Journal ArticleDOI
TL;DR: This work has demonstrated the potential of 3DP to manufacture tablet shapes of different geometries, many of which would be challenging to manufacture by powder compaction.

494 citations


Cites methods from "Pharmaceutical Applications of Hot-..."

  • ...Several research groups have demonstrated HME processes as a viable method to prepare a wide range of accepted pharmaceutical drug delivery systems, including granules, pellets, transdermal patches, transmucosal films systems and implants (Breitenbach, 2002; Crowley et al., 2007; Fonteyne et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: This review will consider the literature that describes the manufacture and characterization of mucoadhesive buccal films and hot-melt extrusion has been explored as an alternative manufacturing process and has yielded promising results.

381 citations


Cites methods from "Pharmaceutical Applications of Hot-..."

  • ...Hot-melt extrusion has been used for the manufacture of controlled-release matrix tablets, pellets, and granules [84], as well as orally disintegrating films [85]....

    [...]

Journal ArticleDOI
TL;DR: The study confirms the potential of 3D printing to fabricate multiple-drug containing devices with specialized design configurations and unique drug release characteristics, which would not otherwise be possible using conventional manufacturing methods.
Abstract: Three dimensional printing (3D printing) was used to fabricate novel oral drug delivery devices with specialized design configurations. Each device was loaded with multiple actives, with the intent of applying this process to the production of personalized medicines tailored at the point of dispensing or use. A filament extruder was used to obtain drug-loaded--paracetamol (acetaminophen) or caffeine--filaments of poly(vinyl alcohol) with characteristics suitable for use in fused-deposition modeling 3D printing. A multinozzle 3D printer enabled fabrication of capsule-shaped solid devices containing the drug with different internal structures. The design configurations included a multilayer device, with each layer containing drug, whose identity was different to the drug in the adjacent layers, and a two-compartment device comprising a caplet embedded within a larger caplet (DuoCaplet), with each compartment containing a different drug. Raman spectroscopy was used to collect 2-dimensional hyper spectral arrays across the entire surface of the devices. Processing of the arrays using direct classical least-squares component matching to produce false color representations of distribution of the drugs was used. This clearly showed a definitive separation between the drug layers of paracetamol and caffeine. Drug release tests in biorelevant bicarbonate media showed unique drug release profiles dependent on the macrostructure of the devices. In the case of the multilayer devices, release of both paracetamol and caffeine was simultaneous and independent of drug solubility. With the DuoCaplet design, it was possible to engineer either rapid drug release or delayed release by selecting the site of incorporation of the drug in the device; the lag-time for release from the internal compartment was dependent on the characteristics of the external layer. The study confirms the potential of 3D printing to fabricate multiple-drug containing devices with specialized design configurations and unique drug release characteristics, which would not otherwise be possible using conventional manufacturing methods.

359 citations

References
More filters
Journal ArticleDOI
TL;DR: Indomethacin (IDM) was found to be both thermally and chemically stable following hot-melt extrusion processing and displayed a plasticizing effect on Eudragit® RL PO as demonstrated by a decrease in the glass transition temperatures of the polymer.
Abstract: Controlled release tablets containing a poorly water-soluble drug, indomethacin (IDM), acrylic polymers (Eudragit RD 100, Eudragit L 100, or Eudragit S 100), and triethyl citrate (TEC) were prepared by hot-melt extrusion. The physicochemical and IDM release properties of the controlled release hot-melt extrudates were investigated. Indomethacin (IDM) was found to be both thermally and chemically stable following hot-melt extrusion processing and displayed a plasticizing effect on Eudragit RL PO as demonstrated by a decrease in the glass transition temperatures of the polymer. The inclusion of either Pluronic F68, Eudragit L 100, or Eudragit S 100 in the powder blend containing Eudragit RD 100 prior to processing increased the rate of release of the IDM from the extrudates. An increase in the media pH and a decrease in the granule particle size also increased the rate of release of IDM. The inclusion of TEC up to 8% in the granule formulation or compressing the granules into tablets had no significant effect on the drug release rate. Indomethacin (IDM) was transformed from a crystalline Form I into an amorphous form in the Eudragit RD 100 granules following hot-melt extrusion. The thermal processing facilitated the formation of a solid solution with a continuous matrix structure that was shown to control drug diffusion from the extrudates.

80 citations

Journal ArticleDOI
TL;DR: The bioadhesive properties of the HPC/PEG 3350 5% film and the polycarbophil 5% containing films, with and without PEG, were investigated in vivo on the human epidermis, showing a greater force of adhesion and elongation at adhesive failure in vivo.

79 citations

Journal ArticleDOI
TL;DR: Micro-TA makes it possible to characterize separate phases of itraconazole and Eudragit® E100, thereby confirming the MTDSC results on phase separation.
Abstract: Purpose. To evaluate the phase separation in itraconazole/Eudragit® E100 solid dispersions prepared by hot-stage extrusion. Methods. Extrudates were prepared using a corotating twin-screw extruder at 180°C. Micro-TA was used to evaluate the phase separation, where the AFM mode is used to visualize the different phases and local thermal analysis (LTA) to characterize the different phases Results. Itraconazole formed a homogeneous mixture with Eudragit® E100 with drug concentrations up to approximately 20%. Above this concentration, phase separation was observed. MTDSC revealed two Tgs and the mesophase of free glassy itraconazole. Performing micro-TA on the surface of these dispersions indicated an increase in sample roughness in the z-axis piezo signal, which could be an indication of free glassy itraconazole. However, thermal conductivity did not reveal differences between separate phases. Performing LTA, where only a small area (20 × 20 μm) is heated, showed two separate and mixed phases of itraconazole and Eudragit® E100. Tip penetration in itraconazole and Eudragit® E100 occurred at 332K and 383K respectively. The difference in tip penetration was explained in terms of the difference in fragility. Conclusion. Micro-TA makes it possible to characterize separate phases of itraconazole and Eudragit® E100, thereby confirming the MTDSC results on phase separation.

78 citations

Journal ArticleDOI
TL;DR: In this article, theophylline was incorporated into polyethylene (PE), polycaprolactone (PC), polyvinyl acetate (PVA), and cellulose acetate butyrate (CAB) disks.

69 citations