scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Phase-change random access memory: a scalable technology

TL;DR: This work discusses the critical aspects that may affect the scaling of PCRAM, including materials properties, power consumption during programming and read operations, thermal cross-talk between memory cells, and failure mechanisms, and discusses experiments that directly address the scaling properties of the phase-change materials themselves.
Abstract: Nonvolatile RAM using resistance contrast in phase-change materials [or phase-change RAM (PCRAM)] is a promising technology for future storage-class memory. However, such a technology can succeed only if it can scale smaller in size, given the increasingly tiny memory cells that are projected for future technology nodes (i.e., generations). We first discuss the critical aspects that may affect the scaling of PCRAM, including materials properties, power consumption during programming and read operations, thermal cross-talk between memory cells, and failure mechanisms. We then discuss experiments that directly address the scaling properties of the phase-change materials themselves, including studies of phase transitions in both nanoparticles and ultrathin films as a function of particle size and film thickness. This work in materials directly motivated the successful creation of a series of prototype PCRAM devices, which have been fabricated and tested at phase-change material cross-sections with extremely small dimensions as low as 3 nm × 20 nm. These device measurements provide a clear demonstration of the excellent scaling potential offered by this technology, and they are also consistent with the scaling behavior predicted by extensive device simulations. Finally, we discuss issues of device integration and cell design, manufacturability, and reliability.
Citations
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings ArticleDOI
20 Jun 2009
TL;DR: This work proposes, crafted from a fundamental understanding of PCM technology parameters, area-neutral architectural enhancements that address these limitations and make PCM competitive with DRAM.
Abstract: Memory scaling is in jeopardy as charge storage and sensing mechanisms become less reliable for prevalent memory technologies, such as DRAM. In contrast, phase change memory (PCM) storage relies on scalable current and thermal mechanisms. To exploit PCM's scalability as a DRAM alternative, PCM must be architected to address relatively long latencies, high energy writes, and finite endurance.We propose, crafted from a fundamental understanding of PCM technology parameters, area-neutral architectural enhancements that address these limitations and make PCM competitive with DRAM. A baseline PCM system is 1.6x slower and requires 2.2x more energy than a DRAM system. Buffer reorganizations reduce this delay and energy gap to 1.2x and 1.0x, using narrow rows to mitigate write energy and multiple rows to improve locality and write coalescing. Partial writes enhance memory endurance, providing 5.6 years of lifetime. Process scaling will further reduce PCM energy costs and improve endurance.

1,568 citations

Journal ArticleDOI
20 Apr 2010
TL;DR: The physics behind this large resistivity contrast between the amorphous and crystalline states in phase change materials is presented and how it is being exploited to create high density PCM is described.
Abstract: In this paper, recent progress of phase change memory (PCM) is reviewed. The electrical and thermal properties of phase change materials are surveyed with a focus on the scalability of the materials and their impact on device design. Innovations in the device structure, memory cell selector, and strategies for achieving multibit operation and 3-D, multilayer high-density memory arrays are described. The scaling properties of PCM are illustrated with recent experimental results using special device test structures and novel material synthesis. Factors affecting the reliability of PCM are discussed.

1,488 citations

Proceedings ArticleDOI
20 Jun 2009
TL;DR: This paper analyzes a PCM-based hybrid main memory system using an architecture level model of PCM and proposes simple organizational and management solutions of the hybrid memory that reduces the write traffic to PCM, boosting its lifetime from 3 years to 9.7 years.
Abstract: The memory subsystem accounts for a significant cost and power budget of a computer system. Current DRAM-based main memory systems are starting to hit the power and cost limit. An alternative memory technology that uses resistance contrast in phase-change materials is being actively investigated in the circuits community. Phase Change Memory (PCM) devices offer more density relative to DRAM, and can help increase main memory capacity of future systems while remaining within the cost and power constraints.In this paper, we analyze a PCM-based hybrid main memory system using an architecture level model of PCM.We explore the trade-offs for a main memory system consisting of PCMstorage coupled with a small DRAM buffer. Such an architecture has the latency benefits of DRAM and the capacity benefits of PCM. Our evaluations for a baseline system of 16-cores with 8GB DRAM show that, on average, PCM can reduce page faults by 5X and provide a speedup of 3X. As PCM is projected to have limited write endurance, we also propose simple organizational and management solutions of the hybrid memory that reduces the write traffic to PCM, boosting its lifetime from 3 years to 9.7 years.

1,451 citations


Cites background or methods from "Phase-change random access memory: ..."

  • ...A good discussion on scaling characteristics of PCM is available in [24]....

    [...]

  • ...The Current-Voltage curve for PCM is shown in Figure 3 [24]....

    [...]

  • ...Figure 2 shows the basic structure of a PCM device [24]....

    [...]

  • ...The difference in resistance between the two states is typically about five orders of magnitude [24] and can be used to infer logical states of binary data....

    [...]

  • ...One of the critical properties that enables PCM is threshold switching [24]....

    [...]

Journal ArticleDOI
TL;DR: NVSim is developed, a circuit-level model for NVM performance, energy, and area estimation, which supports various NVM technologies, including STT-RAM, PCRAM, ReRAM, and legacy NAND Flash and is expected to help boost architecture-level NVM-related studies.
Abstract: Various new nonvolatile memory (NVM) technologies have emerged recently. Among all the investigated new NVM candidate technologies, spin-torque-transfer memory (STT-RAM, or MRAM), phase-change random-access memory (PCRAM), and resistive random-access memory (ReRAM) are regarded as the most promising candidates. As the ultimate goal of this NVM research is to deploy them into multiple levels in the memory hierarchy, it is necessary to explore the wide NVM design space and find the proper implementation at different memory hierarchy levels from highly latency-optimized caches to highly density- optimized secondary storage. While abundant tools are available as SRAM/DRAM design assistants, similar tools for NVM designs are currently missing. Thus, in this paper, we develop NVSim, a circuit-level model for NVM performance, energy, and area estimation, which supports various NVM technologies, including STT-RAM, PCRAM, ReRAM, and legacy NAND Flash. NVSim is successfully validated against industrial NVM prototypes, and it is expected to help boost architecture-level NVM-related studies.

1,100 citations


Cites background from "Phase-change random access memory: ..."

  • ...Various types of sense amplifiers are modeled in NVSim as we discuss in Section V-B....

    [...]

References
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations


Additional excerpts

  • ...series resistance of the contact electrode [36]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a rapid and reversible transition between a highly resistive and a conductive state effected by an electric field was described in various types of disordered materials, particularly amorphous semiconductors covering a wide range of compositions.
Abstract: We describe here a rapid and reversible transition between a highly resistive and a conductive state effected by an electric field which we have observed in various types of disordered materials, particularly amorphous semiconductors1,2 covering a wide range of compositions. These include oxide- and boron-based glasses and materials which contain the elements tellurium and/or arsenic combined with other elements such as those of groups III, IV, and VI.

2,997 citations

Journal ArticleDOI
TL;DR: Amorphous films having a component of the stoichiometric GeTe-Sb2Te3 pseudobinary alloy system were found to have featuring characteristics for optical memory material presenting a large optical change and enabling high-speed one-beam data rewriting as mentioned in this paper.
Abstract: Amorphous films having a component of the stoichiometric GeTe‐Sb2Te3 pseudobinary alloy system, GeSb2Te4 or Ge2Sb2Te5 representatively, were found to have featuring characteristics for optical memory material presenting a large optical change and enabling high‐speed one‐beam data rewriting. The material films being sandwiched by heat‐conductive ZnS layers can be crystallized (low power) or reamorphized (high power) by laser irradiation of very short duration, less than 50 ns. The cooling speed of the sandwiched film is extremely high: more than 1010 deg/s, which permits the molten material to convert to the amorphous state spontaneously; whereas, a low‐power pulse irradiation of the same duration changed the exposed portion into the crystalline state. The optical constant changes between the amorphous state and the crystalline state of them were measured to be large: from 4.7+i1.3 to 6.9+i2.6 and from 5.0+i1.3 to 6.5+i3.5, respectively. The crystallized portion was known to have a GeTe‐like fcc structure ...

1,320 citations

Journal ArticleDOI
TL;DR: The feasibility of a new semiconductor memory concept that promises that integration into a logic complementary metal oxide semiconductor (CMOS) process flow might be possible with only a few additional lithographic steps is demonstrated.
Abstract: Non-volatile 'flash' memories are key components of integrated circuits because they retain their data when power is interrupted. Despite their great commercial success, the semiconductor industry is searching for alternative non-volatile memories with improved performance and better opportunities for scaling down the size of memory cells. Here we demonstrate the feasibility of a new semiconductor memory concept. The individual memory cell is based on a narrow line of phase-change material. By sending low-power current pulses through the line, the phase-change material can be programmed reversibly between two distinguishable resistive states on a timescale of nanoseconds. Reducing the dimensions of the phase-change line to the nanometre scale improves the performance in terms of speed and power consumption. These advantages are achieved by the use of a doped-SbTe phase-change material. The simplicity of the concept promises that integration into a logic complementary metal oxide semiconductor (CMOS) process flow might be possible with only a few additional lithographic steps.

1,207 citations