scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Phd by thesis

01 Apr 1988-Nature (Nature Publishing Group)-Vol. 332, Iss: 6166, pp 676-676
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

Content maybe subject to copyright    Report

Citations
More filters
ReportDOI
01 Nov 1990
TL;DR: This report will establish methods for performing a domain analysis and describe the products of the domain analysis process to illustrate the application of domain analysis to a representative class of software systems.
Abstract: : Successful Software reuse requires the systematic discovery and exploitation of commonality across related software systems. By examining related software systems and the underlying theory of the class of systems they represent, domain analysis can provide a generic description of the requirements of that class of systems and a set of approaches for their implementation. This report will establish methods for performing a domain analysis and describe the products of the domain analysis process. To illustrate the application of domain analysis to a representative class of software systems, this report will provide a domain analysis of window management system software.

4,420 citations

Journal ArticleDOI
TL;DR: The straw person model (SPM) as mentioned in this paper has been proposed to explain the orientation effects of active galactic nuclei (AGN) and quasars in the line of sight (LOS) images.
Abstract: Because the critical central regions of Active Galactic Nuclei (AGN) and quasars are strongly nonspherical but spatially unresolved, orientation effects have been the source of much confusion. In fact, it now appears that much of the variety in AGN types is just the result of varying orientation relative to the line of sight. We can define an extreme hypothesis,, the straw person model (SPM), in which there are two basic types of AGN: the radio quiets and the radio louds. For each type there is a range in intrinsic luminosity, and the luminosity controls some properties such as the Fanaroff and Riley classes. However, at a given intrinsic luminosity, all other properties such as spectroscopic classification and VLBI component speeds are ascribed to orientation. This model is only a caricature of the unification idea, and is already ruled out on many grounds, but it will be useful for organizing the discussion. I’ll describe what I consider to be convincing evidence that orientation effects are important and widespread. The true situation may be in some sense half way between the SPM and the hypothesis that orientation doesn’t affect classification at aIl. To us optimists, the orienration cup is half full rather than half empty. Although it is too soon to say for sure, the hypothesis that most objects’ classifications would be different if seen from other directions is a tenable one today.

4,005 citations


Cites methods from "Phd by thesis"

  • ...Kay (1990) and Tran et al (1992) have fo und more Seyfert 2s with broad permitted lines in the polarized fl ux, but the FC polarizations are generally much less than that of NGC 1068....

    [...]

Journal ArticleDOI
TL;DR: This Review assembles the current knowledge on the isolation of microfibrillated cellulose from wood and its application in nanocomposites; the preparation of nanocrystalline cellulose and its use as a reinforcing agent; and the biofabrication of bacterial nanocellulose, as well as its evaluation as a biomaterial for medical implants.
Abstract: Cellulose fibrils with widths in the nanometer range are nature-based materials with unique and potentially useful features. Most importantly, these novel nanocelluloses open up the strongly expanding fields of sustainable materials and nanocomposites, as well as medical and life-science devices, to the natural polymer cellulose. The nanodimensions of the structural elements result in a high surface area and hence the powerful interaction of these celluloses with surrounding species, such as water, organic and polymeric compounds, nanoparticles, and living cells. This Review assembles the current knowledge on the isolation of microfibrillated cellulose from wood and its application in nanocomposites; the preparation of nanocrystalline cellulose and its use as a reinforcing agent; and the biofabrication of bacterial nanocellulose, as well as its evaluation as a biomaterial for medical implants.

3,452 citations


Cites background or methods from "Phd by thesis"

  • ...b) Spheres formed by agitated cultivation with a shaking rate of 80–100 rpm; diameter: 2–3 mm, smooth surface.([181]) c) Tubes...

    [...]

  • ...a) Film prepared in a PP container under static conditions; dimensions: 25 25 cm(2), thickness: 200 mm.([181]) b) Spheres formed by agitated cultivation with a shaking rate of 80–100 rpm; diameter: 2–3 mm, smooth surface....

    [...]

Journal ArticleDOI
TL;DR: The Arcade Learning Environment (ALE) as discussed by the authors is a platform for evaluating the development of general, domain-independent AI technology, which provides an interface to hundreds of Atari 2600 game environments, each one different, interesting, and designed to be a challenge for human players.
Abstract: In this article we introduce the Arcade Learning Environment (ALE): both a challenge problem and a platform and methodology for evaluating the development of general, domain-independent AI technology. ALE provides an interface to hundreds of Atari 2600 game environments, each one different, interesting, and designed to be a challenge for human players. ALE presents significant research challenges for reinforcement learning, model learning, model-based planning, imitation learning, transfer learning, and intrinsic motivation. Most importantly, it provides a rigorous testbed for evaluating and comparing approaches to these problems. We illustrate the promise of ALE by developing and benchmarking domain-independent agents designed using well-established AI techniques for both reinforcement learning and planning. In doing so, we also propose an evaluation methodology made possible by ALE, reporting empirical results on over 55 different games. All of the software, including the benchmark agents, is publicly available.

2,429 citations

Journal ArticleDOI
TL;DR: The solid electrolyte interphase (SEI) is a protecting layer formed on the negative electrode of Li-ion batteries as a result of electrolyte decomposition, mainly during the first cycle as discussed by the authors.

2,386 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the Breit frame in deepinelastic positron-proton scattering over a large range of four-momentum transfers 5 Q^2 15000 GeV^2 and transverse jet energies 7 E_T 60 GeV.
Abstract: Jet production is studied in the Breit frame in deep-inelastic positron-proton scattering over a large range of four-momentum transfers 5 Q^2 15000 GeV^2 and transverse jet energies 7 E_T 60 GeV. The analysis is based on data corresponding to an integrated luminosity of L_int \simeq 33 pb^(-1) taken in the years 1995-1997 with the H1 detector at HERA at a center-of-mass energy sqrt(s)=300 GeV. Dijet and inclusive jet cross sections are measured multi-differentially using k_perp and angular ordered jet algorithms. The results are compared to the predictions of perturbative QCD calculations in next-to-leading order in the strong coupling constant alphas.QCD fits are performed in which alphas and the gluon density in the proton are determined separately. The gluon density is found to be in good agreement with results obtained in other analyses using data from different processes. The strong coupling constant is determined to be alphas(MZ)=0.1186+-0.0059. In addition an analysis of the data in which both alphas and the gluon density are determined simultaneously is presented.

146 citations

Journal ArticleDOI
TL;DR: The focus then centers on current synthesis strategies for graphene and their weaknesses in terms of electronics applications are highlighted, and the properties of graphene that make it so attractive as a material for electronics is introduced to the reader.
Abstract: Graphene has a multitude of striking properties that make it an exceedingly attractive material for various applications, many of which will emerge over the next decade. However, one of the most promising applications lie in exploiting its peculiar electronic properties which are governed by its electrons obeying a linear dispersion relation. This leads to the observation of half integer quantum hall effect and the absence of localization. The latter is attractive for graphene-based field effect transistors. However, if graphene is to be the material for future electronics, then significant hurdles need to be surmounted, namely, it needs to be mass produced in an economically viable manner and be of high crystalline quality with no or virtually no defects or grains boundaries. Moreover, it will need to be processable with atomic precision. Hence, the future of graphene as a material for electronic based devices will depend heavily on our ability to piece graphene together as a single crystal and define its edges with atomic precision. In this progress report, the properties of graphene that make it so attractive as a material for electronics is introduced to the reader. The focus then centers on current synthesis strategies for graphene and their weaknesses in terms of electronics applications are highlighted.

145 citations

Journal ArticleDOI
TL;DR: Improved methods for isotopically labeling RNAs combined with new types of structural data obtained from a growing repertoire of NMR experiments are facilitating structural and dynamic studies of larger RNAs.
Abstract: Proper functioning of RNAs requires the formation of complex three-dimensional structures combined with the ability to rapidly interconvert between multiple functional states. This review covers recent advances in isotope-labeling strategies and NMR experimental approaches that have promise for facilitating solution structure determinations and dynamics studies of biologically active RNAs. Improved methods for the production of isotopically labeled RNAs combined with new multidimensional heteronuclear NMR experiments make it possible to dramatically reduce spectral crowding and simplify resonance assignments for RNAs. Several novel applications of experiments that directly detect hydrogen-bonding interactions are discussed. These studies demonstrate how NMR spectroscopy can be used to distinguish between possible secondary structures and identify mechanisms of ligand binding in RNAs. A variety of recently developed methods for measuring base and sugar residual dipolar couplings are described. NMR residual dipolar coupling techniques provide valuable data for determining the long-range structure and orientation of helical regions in RNAs. A number of studies are also presented where residual dipolar coupling constraints are used to determine the global structure and dynamics of RNAs. NMR relaxation data can be used to probe the dynamics of macromolecules in solution. The power dependence of transverse rotating-frame relaxation rates was used here to study dynamics in the minimal hammerhead ribozyme. Improved methods for isotopically labeling RNAs combined with new types of structural data obtained from a growing repertoire of NMR experiments are facilitating structural and dynamic studies of larger RNAs.

145 citations

Proceedings ArticleDOI
17 Jun 1997
TL;DR: An algorithm that automatically bootstraps the correspondence between the prototypes is described, which can be used for 2D images as well as for 3D models and is shown to synthesize successfully a flexible model of frontal face images and a flexible models of handwritten digits.
Abstract: Flexible models of object classes, based on linear combinations of prototypical images, are capable of matching novel images of the same class and have been shown to be a powerful tool to solve several fundamental vision tasks such as recognition, synthesis and correspondence. The key problem in creating a specific flexible model is the computation of pixelwise correspondence between the prototypes, a task done until now in a semiautomatic way. In this paper we describe an algorithm that automatically bootstraps the correspondence between the prototypes. The algorithm -which can be used for 2D images as well as for 3D models-is shown to synthesize successfully a flexible model of frontal face images and a flexible model of handwritten digits.

144 citations

Journal ArticleDOI
TL;DR: The aim of this contribution is to give a literature overview of interfacial shear rheological studies of pure protein and protein/surfactant mixtures at liquid interfaces measured with different techniques.

144 citations