scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Phosphine-triggered synthesis of functionalized cyclic compounds

22 May 2008-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 37, Iss: 6, pp 1140-1152
TL;DR: This tutorial review summarizes the recent achievements in nucleophilic phosphine catalysis and describes how phosphines can be easily tailored to efficient annulation reactions with good control over reaction selectivity.
Abstract: Nucleophilic phosphine catalysis has proven to be a powerful tool in organic synthesis, which can provide easy access to cyclic, bicyclic or polycyclic carbocycles and heterocycles. Owing to their comparatively strong and readily tunable nucleophilicity, phosphines can be easily tailored to efficient annulation reactions with good control over reaction selectivity. This has resulted in a tremendous increase in their scope and in a concomitant number of reports where phosphine-triggered annulation reactions occur. This tutorial review summarizes the recent achievements in this area.
Citations
More filters
Journal ArticleDOI
TL;DR: The catalytic asymmetric synthesis of the tetrasubstituted carbon stereocenter at the C-3 position of the oxindole framework integrates new synthetic methods and chiral catalysts.
Abstract: The 3,3′-disubstituted oxindole structural motif is a prominent feature in many alkaloid natural products, which include all kinds of tetrasubstituted carbon stereocenters, spirocyclic or not, all-carbon or heteroatom-containing. The catalytic asymmetric synthesis of the tetrasubstituted carbon stereocenter at the C-3 position of the oxindole framework integrates new synthetic methods and chiral catalysts, reflects the latest achievements in asymmetric catalysis, and facilitates the synthesis of sufficient quantities of related compounds as potential medicinal agents and biological probes. This review summarizes the recent progress in this area, and applications in the total synthesis of related bioactive compounds.

1,085 citations

Journal ArticleDOI
TL;DR: This tutorial review aims at offering a didactic overview of organocatalytic umpolung and should serve as an inspiration for further progress in this field.
Abstract: The umpolung strategy encompasses all the methods that make organic molecules react in an inverse manner compared to their innate polarity-driven reactivity. This concept entered the field of organocatalysis when it was recognized that N-heterocyclic carbenes (NHCs) can provide catalytic access to acyl anion equivalents. Since then, tremendous efforts have followed to develop a broad variety of NHC-catalyzed reactions. In addition to this, more recent research developments have shown that other families of organocatalysts are also able to mediate transformations in which inversion of polarity is involved. This tutorial review aims at offering a didactic overview of organocatalytic umpolung and should serve as an inspiration for further progress in this field.

1,063 citations

Journal ArticleDOI
TL;DR: This Review pays attention to the advances made in catalytic asymmetric synthesis and natural product syntheses based on well-established reactions of allenes, such as propargylation, addition, cycloaddition, cycloisomerization, cyclization, etc., with or without catalysts.
Abstract: Allenes are the simplest class of cumulenes, with two contiguous CC bonds, and show unique physical and chemical properties. These features make allenes particularly attractive in modern organic chemistry. In this Review, attention is paid to the advances made in catalytic asymmetric synthesis and natural product syntheses based on well-established reactions of allenes, such as propargylation, addition, cycloaddition, cycloisomerization, cyclization, etc., with or without catalysts. Their versatile reactivity, substituent-loading ability, axial to center chirality transfer, and controllable selectivity allow access to target molecules by unique and efficient approaches. The main topics in this Review are presented with selected examples from 2003 to 2011.

746 citations

Journal ArticleDOI
TL;DR: This tutorial review selected examples of acyl anion free NHC catalysis using carbonyl compounds are presented.
Abstract: Reaction discovery using N-heterocyclic carbene organocatalysis has been dominated by the chemistry of acyl anion equivalents. Recent studies demonstrate that NHCs are far more diverse catalysts, with a variety of reactions discovered that proceed without acyl anion equivalent formation. In this tutorial review selected examples of acyl anion free NHC catalysis using carbonyl compounds are presented.

649 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a reagent formed by combining diethyl azodicarboxylate (DEAD) and triphenylphosphine (TPP) could be utilized in the intermolecular dehydration between an alcohol and various acidic components such as carboxylic acids, phosphoric diesters, imides, and active methylene compounds.
Abstract: The reagent formed by combining diethyl azodicarboxylate (DEAD) and triphenylphosphine (TPP) could be utilized in the intermolecular dehydration between an alcohol and various acidic components such as carboxylic acids, phosphoric diesters, imides, and active methylene compounds. By the use of DEAD and TPP, diols and hydroxy acids gave cyclic ethers and lactones, respectively. The reaction of nucleosides with DEAD and TPP afforded triphenylphosphoranylnucleosides. Alcohols reacted with 2,6-di-t-butyl-4-nitrophenol in the presence of DEAD and TPP to give aci-nitroesters which converted into the corresponding carbonyl compounds.

3,209 citations

Journal ArticleDOI
TL;DR: The focus of this review is on the area of enantioselective transition metal-catalyzed allylic alkylations which may involve C-C as well as C-X (X ) H or heteroatom) bond formation.
Abstract: Efficient and reliable amplification of chirality has borne its greatest fruit with transition metal-catalyzed reactions since enantiocontrol may often be imposed by replacing an achiral or chiral racemic ligand with one that is chiral and scalemic While the most thoroughly developed enantioselective transition metal-catalyzed reactions are those involving transfer of oxygen (epoxidation and dihydroxylation)1,2 and molecular hydrogen,3 the focus of this review is on the area of enantioselective transition metal-catalyzed allylic alkylations which may involve C-C as well as C-X (X ) H or heteroatom) bond formation4-9 The synthetic utility of transitionmetal-catalyzed allylic alkylations has been soundly demonstrated since its introduction nearly three decades ago10-21 In contrast to processes where the allyl moiety acts as the nucleophilic partner, we will limit our discussion to processes which result in nucleophilic displacements on allylic substrates (eq 1) Such reactions have been recorded with a broad

2,576 citations

Journal ArticleDOI
TL;DR: The diverse examples show that in recent years organocatalysis has developed within organic chemistry into its own subdiscipline, whose "Golden Age" has already dawned.
Abstract: The term "organocatalysis" describes the acceleration of chemical reactions through the addition of a substoichiometric quantity of an organic compound. The interest in this field has increased spectacularly in the last few years as result of both the novelty of the concept and, more importantly, the fact that the efficiency and selectivity of many organocatalytic reactions meet the standards of established organic reactions. Organocatalytic reactions are becoming powerful tools in the construction of complex molecular skeletons. The diverse examples show that in recent years organocatalysis has developed within organic chemistry into its own subdiscipline, whose "Golden Age" has already dawned.

2,279 citations

Journal ArticleDOI
TL;DR: Alkylations with Phenols, Nitrogen Nucleophiles in AAA Total Synthesis, and Considerations for Enantioselective Allylic Alkylation are presented.
Abstract: A. Primary Alcohols as Nucleophiles 2931 B. Carboxylates as Nucleophiles 2931 C. Alkylations with Phenols 2932 IV. Nitrogen Nucleophiles in AAA Total Synthesis 2935 A. Alkylamines as Nucleophiles 2935 B. Azides as a Nucleophile 2936 C. Sulfonamide Nucleophiles 2937 D. Imide Nucleophiles 2938 E. Heterocyclic Amine Nucleophiles 2940 V. Sulfur Nucleophiles 2941 VI. Summary and Conclusions 2941 VII. Acknowledgment 2941 VIII. References 2942 I. Considerations for Enantioselective Allylic Alkylation

2,230 citations

Journal ArticleDOI
TL;DR: The contributions of this laboratory to converting enzymatic enamines, and in some cases imines, into a versatile catalytic asymmetric strategy powered by small organic molecules are summarized.
Abstract: Enamines and imines have long been recognized as key intermediates in enzyme catalysis, particularly within a class of enzymes organic chemists would very much like to emulate, the aldolases. Here we summarize the contributions of this laboratory to converting enzymatic enamines, and in some cases imines, into a versatile catalytic asymmetric strategy powered by small organic molecules.

1,192 citations