scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Phosphorene as a Polysulfide Immobilizer and Catalyst in High-Performance Lithium-Sulfur Batteries.

TL;DR: Theoretical and experimental studies together show phosphorene as a highly potent polysulfide immobilizer for lithium-sulfur batteries enabling a high capacity, good rate capability, and excellent cycling stability.
Abstract: Theoretical and experimental studies together show phosphorene as a highly potent polysulfide immobilizer for lithium-sulfur batteries, enabling a high capacity, good rate capability, and excellent cycling stability
Citations
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors is summarized and key technical challenges are highlighted regarding further research in this thriving field.
Abstract: Notably, many significant breakthroughs for a new generation of supercapacitors have been reported in recent years, related to theoretical understanding, material synthesis and device designs. Herein, we summarize the state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors. Firstly, fundamental understanding of the mechanism is mainly focused on the relationship between the structural properties of electrode materials and their electrochemical performances based on some in situ characterization techniques and simulations. Secondly, some emerging electrode materials are discussed, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), MXenes, metal nitrides, black phosphorus, LaMnO3, and RbAg4I5/graphite. Thirdly, the device innovations for the next generation of supercapacitors are provided successively, mainly emphasizing flow supercapacitors, alternating current (AC) line-filtering supercapacitors, redox electrolyte enhanced supercapacitors, metal ion hybrid supercapacitors, micro-supercapacitors (fiber, plane and three-dimensional) and multifunctional supercapacitors including electrochromic supercapacitors, self-healing supercapacitors, piezoelectric supercapacitors, shape-memory supercapacitors, thermal self-protective supercapacitors, thermal self-charging supercapacitors, and photo self-charging supercapacitors. Finally, the future developments and key technical challenges are highlighted regarding further research in this thriving field.

1,397 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the recent progress in high-sulfur-loading Li-S batteries enabled by hierarchical design principles at multiscale, particularly, basic insights into the interfacial reactions, strategies for mesoscale assembly, unique architectures, and configurational innovation in the cathode, anode, and separator.
Abstract: Owing to high specific energy, low cost, and environmental friendliness, lithium–sulfur (Li–S) batteries hold great promise to meet the increasing demand for advanced energy storage beyond portable electronics, and to mitigate environmental problems. However, the application of Li–S batteries is challenged by several obstacles, including their short life and low sulfur utilization, which become more serious when sulfur loading is increased to the practically accepted level above 3–5 mg cm−2. More and more efforts have been made recently to overcome the barriers toward commercially viable Li–S batteries with a high sulfur loading. This review highlights the recent progress in high-sulfur-loading Li–S batteries enabled by hierarchical design principles at multiscale. Particularly, basic insights into the interfacial reactions, strategies for mesoscale assembly, unique architectures, and configurational innovation in the cathode, anode, and separator are under specific concerns. Hierarchy in the multiscale design is proposed to guide the future development of high-sulfur-loading Li–S batteries.

1,364 citations

Journal ArticleDOI
TL;DR: Recent advances on catalytic effects in increasing the rate of conversion of soluble long‐chain LiPSs to insoluble short-chain Li2S2/Li2S, and vice versa, are reviewed, and the roles of noble metals, metal oxides, metal sulfides,Metal nitrides, and some metal‐free materials in this process are highlighted.
Abstract: Lithium-sulfur (Li-S) battery has emerged as one of the most promising next-generation energy-storage systems. However, the shuttle effect greatly reduces the battery cycle life and sulfur utilization, which is great deterrent to its practical use. This paper reviews the tremendous efforts that are made to find a remedy for this problem, mostly through physical or chemical confinement of the lithium polysulfides (LiPSs). Intrinsically, this "confinement" has a relatively limited effect on improving the battery performance because in most cases, the LiPSs are "passively" blocked and cannot be reused. Thus, this strategy becomes less effective with a high sulfur loading and ultralong cycling. A more "positive" method that not only traps but also increases the subsequent conversion of LiPSs back to lithium sulfides is urgently needed to fundamentally solve the shuttle effect. Here, recent advances on catalytic effects in increasing the rate of conversion of soluble long-chain LiPSs to insoluble short-chain Li2S2/Li2S, and vice versa, are reviewed, and the roles of noble metals, metal oxides, metal sulfides, metal nitrides, and some metal-free materials in this process are highlighted. Challenges and potential solutions for the design of catalytic cathodes and interlayers in Li-S battery are discussed in detail.

671 citations

Journal ArticleDOI
TL;DR: This review has summarized the recent progress of flexible Li-S and analogous batteries, and emphasized the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-typeLi-S batteries are highlighted.
Abstract: Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium–sulfur (Li–S) batteries and analogous flexible alkali metal–chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li–S and analogous batteries. A brief introduction to flexible energy storage systems and general Li–S batteries has been provided first. Progress in flexible materials for flexible Li–S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal–chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li–S batteries are highlighted. In the end, existing challenges and future development of flexible Li–S and analogous alkali metal–chalcogen batteries are summarized and prospected.

525 citations

References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
TL;DR: In this article, a method for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector is given, where the integration can be over the entire zone or over specified portions thereof.
Abstract: A method is given for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector. The integration can be over the entire Brillouin zone or over specified portions thereof. This method also has applications in spectral and density-of-state calculations. The relationships to the Chadi-Cohen and Gilat-Raubenheimer methods are indicated.

51,059 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: In this article, a few-layer black phosphorus crystals with thickness down to a few nanometres are used to construct field effect transistors for nanoelectronic devices. But the performance of these materials is limited.
Abstract: Two-dimensional crystals have emerged as a class of materials that may impact future electronic technologies. Experimentally identifying and characterizing new functional two-dimensional materials is challenging, but also potentially rewarding. Here, we fabricate field-effect transistors based on few-layer black phosphorus crystals with thickness down to a few nanometres. Reliable transistor performance is achieved at room temperature in samples thinner than 7.5 nm, with drain current modulation on the order of 10(5) and well-developed current saturation in the I-V characteristics. The charge-carrier mobility is found to be thickness-dependent, with the highest values up to ∼ 1,000 cm(2) V(-1) s(-1) obtained for a thickness of ∼ 10 nm. Our results demonstrate the potential of black phosphorus thin crystals as a new two-dimensional material for applications in nanoelectronic devices.

6,924 citations

Journal ArticleDOI
21 Mar 2014-ACS Nano
TL;DR: In this paper, the 2D counterpart of layered black phosphorus, which is called phosphorene, is introduced as an unexplored p-type semiconducting material and the authors find that the band gap is direct, depends on the number of layers and the in-layer strain, and significantly larger than the bulk value of 0.31-0.36 eV.
Abstract: We introduce the 2D counterpart of layered black phosphorus, which we call phosphorene, as an unexplored p-type semiconducting material. Same as graphene and MoS2, single-layer phosphorene is flexible and can be mechanically exfoliated. We find phosphorene to be stable and, unlike graphene, to have an inherent, direct, and appreciable band gap. Our ab initio calculations indicate that the band gap is direct, depends on the number of layers and the in-layer strain, and is significantly larger than the bulk value of 0.31–0.36 eV. The observed photoluminescence peak of single-layer phosphorene in the visible optical range confirms that the band gap is larger than that of the bulk system. Our transport studies indicate a hole mobility that reflects the structural anisotropy of phosphorene and complements n-type MoS2. At room temperature, our few-layer phosphorene field-effect transistors with 1.0 μm channel length display a high on-current of 194 mA/mm, a high hole field-effect mobility of 286 cm2/V·s, and an...

5,233 citations

Trending Questions (1)
What is phosphoseirne?

Phosphorene is a material mentioned in the paper. It is described as a highly potent polysulfide immobilizer for lithium-sulfur batteries.