scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art

TL;DR: In this article, a comprehensive overview of the application of commercial TiO 2 photocatalysts for removal of VOCs in air is provided, including the reaction mechanisms and identified reaction intermediates/by-products for most prevalent VOC families.
Abstract: Inevitable presence of volatile organic compounds (VOCs) in indoor environment and their adverse impact on human health and productivity have encouraged the development of various technologies for air pollution remediation. Among these technologies, photocatalytic oxidation (PCO) is regarded as one of the most promising methods and has been the focus of many research works in the last two decades. Titanium dioxide (TiO 2 ) is by far the most investigated photocatalyst for photocatalytic degradation of gaseous VOCs. This review article is intended to provide a comprehensive overview of the application of commercial TiO 2 photocatalysts for removal of VOCs in air. First, the fundamentals of photocatalytic oxidation are briefly discussed and common TiO 2 -based photocatalysts are introduced. Then, the relations between the characteristics of photocatalysts (e.g. crystallinity, surface area and surface chemistry) and photocatalytic activity as well as the influence of key operating parameters on PCO processes are investigated. Afterwards, the reaction mechanisms and identified reaction intermediates/by-products for the most prevalent VOC families are reviewed. Finally, the paper discusses the deactivation of photocatalysts during PCO processes and some of the common regeneration techniques.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the main advancements in overcoming the barriers accompanied by pure ZnO and the criteria for fabrication of effective visible-light-responsive (ZnO-based) photocatalysts are reviewed.

697 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive literature review of TiO2 modification techniques that include approaches for overcoming the inherentTiO2 limitations and improving the photocatalytic degradation of VOCs.

667 citations

Journal ArticleDOI
TL;DR: In this paper, the basic principles, photocatalytic-reactor design, kinetics, key findings, and the mechanism of metal-doped TiO2 are comprehensively reviewed.
Abstract: Hydrogen (H2) production via photocatalytic water splitting is one of the most promising technologies for clean solar energy conversion to emerge in recent decades. The achievement of energy production from water splitting would mean that we could use water as a fuel for future energy need. Among the various photocatalytic materials, titanium dioxide (TiO2) is the dominant and most widely studied because of its exceptional physico-chemical characteristics. Surface decoration of metal/non-metal on TiO2 nanoparticles is an outstanding technique to revamp its electronic properties and enrich the H2 production efficiency. Metal dopants play a vital role in separation of electron-hole pairs on the TiO2 surface during UV/visible/simulated solar light irradiation. In this paper, the basic principles, photocatalytic-reactor design, kinetics, key findings, and the mechanism of metal-doped TiO2 are comprehensively reviewed. We found that Langmuir-Hinshelwood kinetic model is commonly employed by the researchers to demonstrate the rate of H2 production. Copper (Cu), gold (Au) and platinum (Pt) are the most widely studied dopants for TiO2, owing to their superior work function. The metal dopants can amplify the H2 production efficiency of TiO2 through Schottky barrier formation, surface plasmon resonance (SPR), generation of gap states by interaction with TiO2 VB states. The recent advances and important consequences of 2D materials, perovskites, and other novel photocatalysts for H2 generation have also been reviewed.

609 citations

Journal ArticleDOI
TL;DR: In this article, a review highlights the applied protocols to ameliorate the photoactivity of graphitic carbon nitride (g-C3N4) based nanocomposites through combining with various materials.

381 citations

Journal ArticleDOI
TL;DR: In this article, a review of the use of piezoelectric materials in photocatalysis and catalysis, especially in the photodegradation of pollutants, for environmental remediation is presented.
Abstract: The accumulation of various contaminants in air, soil and water is threatening the natural environment. The remediation of the environmental contaminations is today an urge. Among the remediation methods employed, advanced oxidation processes (AOPs) are a class of techniques based on the in situ generation of highly reactive and oxidizing radical species which can destroy most of the organic pollutants. AOPs driven by light are found to be the most popular for wastewater treatment due to the abundance of solar light in some regions. The removal of organic contaminants using semiconductor-based photocatalysts has been extensively investigated. However, low charge carrier mobility and rapid electron-hole pair recombination are the common problems that limit the semiconductor-based photocatalysis. Although a large number of alternative systems have been investigated, electron–hole pair separation is still too low in photocatalytic systems. A new concept was introduced recently in which the built-in electric field by ferroelectric, pyroelectric and piezoelectric effects in photocatalytic particles was exploited to enhance the separation of photoinduced charge carriers. Among these new systems that are still under investigation, the use of piezoelectric materials in the photodegradation of pollutants recently drew a lot of attention for environmental remediation. Due to the non-centrosymmetric nature, the piezoelectric materials demonstrate unique catalytic properties as a result of the creation of the built-in electric field by the dipole polarization. This latter provides a driving force for the transport of the photoinduced charge carriers enabling their separation. This review covers the use of piezoelectric materials in photocatalysis and catalysis, especially piezoelectric-catalysis, for environmental remediation. The paper details the fundamentals and basic properties of ferroelectric, pyroelectric and piezoelectric materials. The effect of the built-in electric field in these materials on the photocatalysis/catalysis charge carrier separation is discussed. Possible applications of piezoelectric materials in environmental remediation are reviewed and discussed taking into account several different aspects such as the kinetics of the degradation of the organic pollutants and water splitting. Finally, the current research trends and future prospects of piezocatalysis and piezophotocatalysis are discussed.

371 citations

References
More filters
Journal ArticleDOI
TL;DR: The field of photocatalysis can be traced back more than 80 years to early observations of the chalking of titania-based paints and to studies of the darkening of metal oxides in contact with organic compounds in sunlight as discussed by the authors.

5,729 citations

Journal ArticleDOI
TL;DR: The number of people exposed to environmental tobacco smoke in California seems to have decreased over the same time period, where exposure is determined by the reported time spent with a smoker.
Abstract: Because human activities impact the timing, location, and degree of pollutant exposure, they play a key role in explaining exposure variation. This fact has motivated the collection of activity pattern data for their specific use in exposure assessments. The largest of these recent efforts is the National Human Activity Pattern Survey (NHAPS), a 2-year probability-based telephone survey ( n=9386) of exposure-related human activities in the United States (U.S.) sponsored by the U.S. Environmental Protection Agency (EPA). The primary purpose of NHAPS was to provide comprehensive and current exposure information over broad geographical and temporal scales, particularly for use in probabilistic population exposure models. NHAPS was conducted on a virtually daily basis from late September 1992 through September 1994 by the University of Maryland's Survey Research Center using a computer-assisted telephone interview instrument (CATI) to collect 24-h retrospective diaries and answers to a number of personal and exposure-related questions from each respondent. The resulting diary records contain beginning and ending times for each distinct combination of location and activity occurring on the diary day (i.e., each microenvironment). Between 340 and 1713 respondents of all ages were interviewed in each of the 10 EPA regions across the 48 contiguous states. Interviews were completed in 63% of the households contacted. NHAPS respondents reported spending an average of 87% of their time in enclosed buildings and about 6% of their time in enclosed vehicles. These proportions are fairly constant across the various regions of the U.S. and Canada and for the California population between the late 1980s, when the California Air Resources Board (CARB) sponsored a state-wide activity pattern study, and the mid-1990s, when NHAPS was conducted. However, the number of people exposed to environmental tobacco smoke (ETS) in California seems to have decreased over the same time period, where exposure is determined by the reported time spent with a smoker. In both California and the entire nation, the most time spent exposed to ETS was reported to take place in residential locations.

3,400 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent developments in the area of TiO 2 photocatalysis research, in terms of new materials from a structural design perspective, has been summarized.
Abstract: TiO 2 photocatalysis is widely used in a variety of applications and products in the environmental and energy fields, including self-cleaning surfaces, air and water purification systems, sterilization, hydrogen evolution, and photoelectrochemical conversion. The development of new materials, however, is strongly required to provide enhanced performances with respect to the photocatalytic properties and to find new uses for TiO 2 photocatalysis. In this review, recent developments in the area of TiO 2 photocatalysis research, in terms of new materials from a structural design perspective, have been summarized. The dimensionality associated with the structure of a TiO 2 material can affect its properties and functions, including its photocatalytic performance, and also more specifically its surface area, adsorption, reflectance, adhesion, and carrier transportation properties. We provide a brief introduction to the current situation in TiO 2 photocatalysis, and describe structurally controlled TiO 2 photocatalysts which can be classified into zero-, one-, two-, and three-dimensional structures. Furthermore, novel applications of TiO 2 surfaces for the fabrication of wettability patterns and for printing are discussed.

2,733 citations

Journal ArticleDOI
TL;DR: In this article, the basic fundamental principles are described as well as the influence of the main parameters governing the kinetics (mass of catalyst, wavelength, initial concentration, temperature and radiant flux).

2,424 citations

Journal ArticleDOI
TL;DR: In this paper, the role of rutile in mixed-phase titania photocatalyst was investigated by EPR spectroscopy, showing that the transition points between these two phases allow for rapid electron transfer from pure-phase rutiles to anatase.
Abstract: Charge separation characteristics of a high-activity, mixed-phase titania photocatalyst (Degussa P25) are probed by EPR spectroscopy. While previous proposals consider rutile as a passive electron sink hindering recombination in anatase, this research details the critical and active role of rutile in TiO2 formulations. The inactivity of pure-phase rutile is due in part to rapid rates of recombination. Yet, in mixed-phase TiO2, charges produced on rutile by visible light are stabilized through electron transfer to lower energy anatase lattice trapping sites. These results suggest that within mixed-phase titania (P25) there is a morphology of nanoclusters containing atypically small rutile crystallites interwoven with anatase crystallites. The transition points between these two phases allow for rapid electron transfer from rutile to anatase. Thus, rutile acts as an antenna to extend the photoactivity into visible wavelengths and the structural arrangement of the similarly sized TiO2 crystallites creates ca...

1,878 citations