scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO2 uptake in Arbutus unedo growing in Portugal

TL;DR: During the “midday depression” of net CO2 exchange in the mediterranean sclerophyllous shrub Arbutus unedo, examined in the field in Portugal during August of 1987, several parameters indicative of photosynthetic competence were strongly and reversibly affected.
Abstract: During the “midday depression” of net CO2 exchange in the mediterranean sclerophyllous shrub Arbutus unedo, examined in the field in Portugal during August of 1987, several parameters indicative of photosynthetic competence were strongly and reversibly affected. These were the photochemical efficiency of photosystem (PS) II, measured as the ratio of variable to maximum chlorophyll fluorescence, as well as the photon yield and the capacity of photosynthetic O2 evolution at 10% CO2, of which the apparent photon yield of O2 evolution was most depressed. Furthermore, there was a strong and reversible increase in the content of the carotenoid zeaxanthin in the leaves that occurred at the expense of both violaxanthin and β-carotene. Diurnal changes in fluorescence characteristics were interpreted to indicate three concurrent effects on the photochemical system. First, an increase in the rate of radiationless energy dissipation in the antenna chlorophyll, reflected by changes in 77K fluorescence of PSII and PSI as well as in chlorophyll a fluorescence at ambient temperature. Second, a state shift characterized by an increase in the proportion of energy distributed to PSI as reflected by changes in PSI fluorescence. Third, an effect lowering the photon yield of O2 evolution and PSII fluorescence at ambient temperature without affecting PSII fluorescence at 77K which would be expected from a decrease in the activity of the water splitting enzyme system, i.e. a donor side limitation.
Citations
More filters
Journal ArticleDOI
01 Jan 1991
TL;DR: Fluorescence as a Reaction Competing in the Deactivation of Excited Chlorophyll and the Origin of Fluorescence Emission.
Abstract: BIOPHYSICAL BASIS O F FLUORESCENCE EMISSION FROM CHLOROPLASTS . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 314 Fluorescence as a Reaction Competing in the Deactivation of Excited Chlorophyll . . . . . . . . . . ... . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Lifetimes of Fluorescence . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 317 Origin of Fluorescence Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1 Fluorescence of PS 11 and PS I at Ambient and Low Temperatures . . . . . . . . . . . . . . . . . . . 323 FLUORESCENCE INDUCTION AND PS II HETEROGENEITy 325 Fluorescence Transient from Fo to FM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 The FI Level and Inactive PS11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... . .. . . . .. . . . . . . . . . 326 Fluorescence Induction in High Ught .. . . . . . . . . 327 Rise in the Presence of DCMU and a/{3 Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 FLUORESCENCE QUENCHING 329 Resolution of Quenching Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ........ . .. . . . . . . . . . . . . . . 330 Mechanism of Energy·Dependent Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 1 Quenching Related t o State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . ......... . . .. .. . . . . . . . 334 Photoinhibitory Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 Further Quenching Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 Physiological Aspects of Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 338 CONCLUSIONS AND PERSPECTiVES 341

4,144 citations

Journal ArticleDOI
01 Jan 1992
TL;DR: The Xanthophyll cycle and thermal energy dissipation were investigated in this paper. But the results of these experiments were limited to the case of light-capturing systems, where active oxygen was not formed in the Photochemical Apparatus.
Abstract: PHOTO PROTECTION 604 Prevention oj Excessive Light Absorption... 604 Removal of Excess Excitation Energy Directly within the Light-Capturing System ......... ...... . . ..... ..... . .... . ..... ...... .... . .. . .. . . ..... . . . ... ... . 604 Removal oj Active Oxygen Formed in the Photochemical Apparatus ........ . . .. . . . . . . 605 INACTIV A TIONiTURNOVER OF PS II 606 THE XANTHOPHYLL CYCLE AND THERMAL ENERGY DISSIPATION: A PHOTOPROTECTIVE RESPONSE 608 Characteristics oj the Xanthophyll Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 608 Association Among the De-epoxidized State oj the Xanthophyll Cycle, Thermal Energy Dissipation. and Photoprotection .. .. . . . .. . . ...... .. .. ... ... 609 Operation of the Xanthophyll Cycle in the Field . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .... . . . .. . . . . 611 CONCLUSIONS 618

2,388 citations

Journal ArticleDOI
TL;DR: During normally-encountered degrees of water deficit the capacity of the antioxidant systems and their ability to respond to increased active oxygen generation may be sufficient to prevent overt expression of damage.
Abstract: Water deficits cause a reduction in the rate of photosynthesis. Exposure to mild water deficits, when relative water content (RWC) remains above 70%, primarily causes limitation to carbon dioxide uptake because of stomatal closure. With greater water deficits, direct inhibition of photosynthesis occurs. In both cases limitation of carbon dioxide fixation results in exposure of chloroplasts to excess excitation energy. Much of this can be dissipated by various photoprotective mechanisms. These include dissipation as heat via carotenoids, photorespiration, CAM idling and, in some species, leaf movements and other morphological features which minimize light absorption. The active oxygen species superoxide and singlet oxygen are produced in chloroplasts by photoreduction of Oxygen and energy transfer from triplet excited chlorophyll to oxygen, respectively. Hydrogen peroxide and hydroxyl radicals can form as a result of the reactions of superoxide. All these species are reactive and potentially damaging, causing lipid peroxidation and inactivation of enzymes. They are normally scavenged by a range of antioxidants and enzymes which are present in the chloroplast and other subcellular compartments. When carbon dioxide fixation is limited by water deficit, the rate of active oxygen formation increases in chloroplasts as excess excitation energy, not dissipated fay the photoprotective mechanisms, is used to form superoxide and singlet oxygen. However, photorespiratory hydrogen peroxide production in peroxisomes decreases. Increased superoxide can be detected by EPR (electron paramagnetic resonance) in chloroplasts from droughted plants. Stiperoxide formation leads to changes suggestive of oxidative damage including lipid peroxidation and a decrease in ascorbate. These changes are not, however, apparent until severe water deficits develop, and they could also be interpreted as secondary effects of water deficit-induced senescence or wounding. Non-lethal water deficits often result in increased activity of superoxide dismutase, glutathione reductase and monodehydroascorbate reductase. Increased capacity of these protective enzymes may be part of a general antioxidative response in plants involving regulation of protein synthesis or gene expression. Since the capacity of these enzymes is also increased by other treatments which cause oxidative damage, and which alter the balance between excitation energy input and carbon dioxide fixation such as low temperature and high irradiance, it is suggested that water deficit has the same effect. Light levels that are not normally excessive do become excessive and photoprotective/antioxidative systems are activated. Some of the photoprotective mechanisms themselves could result in active oxygen formation. Photoinhibitory damage also includes a component of oxidative damage. During normally-encountered degrees of water deficit the capacity of the antioxidant systems and their ability to respond to increased active oxygen generation may be sufficient to prevent overt expression of damage. Desiccation-tolerant tissues such as bryophytes, lichens, spores, seeds, some algae and a few vascular plant leaves can survive desiccation to below 30-40% RWC, A component of desiccation damage in seeds and bacteria is oxygen-dependent. Desiccation causes oxidation of glutathione, a major antioxidant, and appearance of a free radical signal detected by EPR in a number of tissues suggesting that oxidative damage has occurred. In photosynthetic cells damage may arise from photooxidation. Disruption of membrane-bound electron tranport systems in partially hydrated tissue could lead to reduction of oxygen to superoxide. Oxidation of lipids and sulphydryl groups may also occur in dry tissue. Tolerant cells recover upon rehydration and arc able to reduce their glutathione pool. Non-tolerant species go on to show further oxidative damage including lipid peroxidation. It is difficult to attribute this subsequent damage to the cause or effect of death. Embryos in seeds lose desiccation tolerance soon after imbibition. This is associated with membrane damage that has been attributed to superoxide-mediated deesterification of phospholipids and loss of lipophilic antioxidants. These effects are discussed in relation to other mechanisms involved in desiccation tolerance. Contents Summary 27 I. Introduction 28 II. Generation of active oxygen and defence mechanisms in plant cells 29 III. The effect of water deficit on photosynthesis 31 IV. Mechanisms for active oxygen generation during water deficit 36 V. Evidence for oxidative damage during water deficit 39 VI. Desiccation 47 VII. Conclusions 52 Acknowledgements 53 References 53.

2,008 citations

Journal ArticleDOI
TL;DR: Synthese des mecanismes de photoprotection chez les vegetaux, en reponse a un eclairement energetique; implication des carotenoides, en particulier la zeaxanthine, a la dissipation d'energie, en relation avec le cycle des xanthophylles.

1,555 citations

Journal ArticleDOI
01 Jan 1994
TL;DR: The author reveals the secrets of the prolific phytoplankton-farming success story, as well as some of the techniques used to achieve this success in the past.
Abstract: CONTENTS INTRODUCTION ..... .... .... .... .... .... .... .... .... .... .... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .... .... .... 633 MECHANISMS ..... .... .... .... .... .... .... .... .... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... ........ ........ .... 636 Photosystem Il Inacti vaJion, Damage and Recovery: The DI Story 637 A voidance of PSll Damage: The Xanthophyll Cycle Story .... 640 Damage rmd A voidance: A Blurring of the Division . . . . . . ...... . . . . . . . . . . . . . . . . . . 643 PHOTOINHIBITION IN THE FIELD AND OPEN OCEAN . . . .. ... .. . .. .... .... . . . . . . . . .... 644 Terrestrial VegetaJion .. .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... . . . . . . . . .... .... .... . . . . . . . . . . . . . . . . . . . . . . . . 644 Phytoplankton 646 SIGNIFICANCE TO PRODUCTION: A MODELING APPROACH 648 OBSERVED CHANGES IN PRODUCTION ....... . . . .... ........ 653 PHOTO INHIBITION AND PLANT DISTRIBUTIONS .... .... .... .... .... .... . . . . . . . . . . . . . . . . . . . . 654 CONCLUSIONS .... .... .... .... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ .... .... .... .... ........ .... ........ 655

1,511 citations

References
More filters
Journal ArticleDOI
01 Apr 1987-Planta
TL;DR: Determinations of the photon yield of O2 evolution and the Fv/FM, 692 ratio can serve as excellent quantitative measures of photoinhibition of overall photosynthetic energy-conversion system and of photochemistry of photosystem II, respectively.
Abstract: Photon yields of oxygen evolution at saturating CO2 were determined for 44 species of vascular plants, representing widely diverse taxa, habitats, life forms and growth conditions. The photonyield values on the basis of absorbed light (φa) were remarkably constant among plants possessing the same pathway of photosynthetic CO2 fixation, provided the plants had not been subjected to environmental stress. The mean φa value ±SE for 37 C3 species was 0.106±0.001 O2·photon-1. The five C4 species exhibited lower photon yields and greater variation than the C3 species (φa=0.0692±0.004). The φa values for the two Crassulaceanacid-metabolism species were similar to those of C3 species. Leaf chlorophyll content had little influence on φa over the range found in normal, healthy leaves. Chlorophyll fluorescence characteristics at 77 K were determined for the same leaves as used for the photon-yield measurements. Considerable variation in fluorescence emission both at 692 nm and at 734 nm, was found 1) among the different species; 2) between the upper and lower surfaces of the same leaves; and 3) between sun and shade leaves of the same species. By contrast, the ratio of variable to maximum fluorescence emission at 692 nm (Fv/FM, 692) remained remarkably constant (The mean value for the C3 species was 0.832±0.004). High-light treatments of shade leaves resulted in a reduction in both φa and the Fv/FM, 692 ratio. The extent of the reductions increased with time of exposure to bright light. A linear relationship was obtained when φa was plotted against Fv/FM, 692. The results show that determinations of the photon yield of O2 evolution and the Fv/FM, 692 ratio can serve as excellent quantitative measures of photoinhibition of overall photosynthetic energy-conversion system and of photochemistry of photosystem II, respectively. This is especially valuable in field work where it is often impossible to obtain appropriate controls.

2,287 citations

Book ChapterDOI
10 Jan 1981
TL;DR: In any habitat the quantum flux density varies seasonally, diurnally, and spatially (such as within a canopy of a given plant stand) as mentioned in this paper, which is the most conspicuous environmental variable with which plants must cope.
Abstract: Growth of autotrophic plants is directly and dramatically influenced by the intensity of light — the driving force of photosynthesis — which provides nearly all of the carbon and chemical energy needed for plant growth. Moreover, light intensity (quantum flux density) is perhaps the most conspicuous environmental variable with which plants must cope. Contrasting terrestrial habitats may differ by at least two orders of magnitude in the daily quantum flux available for photosynthesis. In any habitat the quantum flux density varies seasonally, diurnally, and spatially (such as within a canopy of a given plant stand).

1,367 citations


"Photochemical efficiency of photosy..." refers background in this paper

  • ...growth (Bj6rkman 1981), photosynthetic capacity was lower in the sun leaves than in the shade leaves of A....

    [...]

  • ...unedo is unusual compared to many other plants which respond with an increase in photosynthetic capacity with increasing growth PFD (Bj6rkman 1981)....

    [...]

Journal ArticleDOI
TL;DR: FO and FV are the same type of fluorescence, both emanating from the bulk chlorophyll of Photosystem II, according to simple theory, which predicts that the ratio FV/FM should equal phipo.

933 citations

Journal ArticleDOI
01 Jun 1987-Planta
TL;DR: It is proposed that high-light treatments can have at least two different, concurrent effects on 77K fluorescence in leaves, one results from damage to the photosystem II (PSII) reaction-center complex and leads to a rise in FO, 692; the other results from an increased non-radiative energy dissipation in the pigment bed.
Abstract: High-light treatments (1750–2000 μmol photons m−2 · s−1) of leaves from a number of higher-plant species invariably resulted in quenching of the maximum 77K chlorophyll fluorescence at both 692 and 734 nm (FM, 692 and FM, 734). The response of instantaneous fluorescence at 692 nm (FO, 692) was complex. In leaves of some species FO, 692 increased dramatically in others it was quenched, and in others yet it showed no marked, consistent change. Regardless of the response of FO, 692 an apparently linear relationship was obtained between the ratio of variable to maximum fluorescence (FV/FM, 692) and the photon yield of O2 evolution, indicating that photoinhibition affects these two variables to approximately the same extent. Treatment of leaves in a CO2−free gas stream containing 2% O2 and 98% N2 under weak light (100 μmol · m−2 · s−1) resulted in a general and fully reversible quenching of 77K fluorescence at 692 and 734 nm. In this case both FO, 692 and FM, 692 were invariably quenched, indicating that the quenching was caused by an increased non-radiative energy dissipation in the pigment bed. We propose that high-light treatments can have at least two different, concurrent effects on 77K fluorescence in leaves. One results from damage to the photosystem II (PSII) reaction-center complex and leads to a rise in FO, 692; the other results from an increased non-radiative energy dissipation and leads to quenching of both FO, 692 and FM, 692 This general quenching had a much longer relaxation time than reported for ΔpH-dependent quenching in algae and chloroplasts. Sun leaves, whose FV/FM, 692 ratios were little affected by high-light exposure in normal air, suffered pronounced photoinhibition when the exposure was made under conditions that prevent photosynthetic gas exchange (2% O2, 0% CO2). However, they were still less susceptible than shade leaves, indicating that the higher capacity for energy dissipation via photosynthesis is not the only cause of their lower susceptibility. The rate constant for recovery from photoinhibition was much higher in mature sun leaves than in mature shade leaves, indicating that differences in the capacity for continuous repair may in part account for the difference in their susceptibility to photoinhibition.

755 citations


Additional excerpts

  • ...An increase in the rate of radiationless dissipation of excitation energy, which, according to the model of Kitajima and Butler (1975), occurs in the antenna chlorophyll, has been suggested to be the cause for a quenching of both Fo, 77K and FM, 77K from PSII and PSI (Bj6rkman 1987; Demmig and Bj6rkman 1987; Demmig et al. 1987)....

    [...]

01 May 1987
TL;DR: Comparative studies of chlorophyll a fluorescence and of the pigment composition of leaves suggest a specific role of zeaxanthin, a carotenoid formed in the xanthophyll cycle, in protecting the photosynthetic apparatus against the adverse effects of excessive light.
Abstract: Comparative studies of chlorophyll a fluorescence, measured with a pulse amplitude modulated fluorometer, and of the pigment composition of leaves, suggest a specific role of zeaxanthin, a carotenoid formed in the xanthophyll cycle, in protecting the photosynthetic apparatus against the adverse effects of excessive light. This conclusion is based on the following findings: (a) exposure of leaves of Populus balsamifera, Hedera helix, and Monstera deliciosa to excess excitation energy (high light, air; weak light, 2% O/sub 2/, 0% CO/sub 2/) led to massive formation of zeaxanthin and a decrease in violaxanthin. (b) When exposed to photoinhibitory light levels in air, shade leaves of H. helix had a higher capacity for zeaxanthin formation, at the expense of ..beta..-carotene, than shade leaves of M. deliciosa. Changes in fluorescence characteristics suggested that, in H. helix, the predominant response to high light was an increase in the rate of nonradiative energy dissipation, whereas, in M. deliciosa, photoinhibitory damage to photosystem II reaction centers was the prevailing effect. (c) Exposure of a sun leaf of P. balsamifera to increasing photon flux densities in 2% O/sub 2/ and 0% CO/sub 2/ resulted initially in increasing levels of zeaxanthin (matched by decreases in violaxanthin) and was accompaniedmore » by fluorescence changes indicative of increased nonradiative energy dissipation. Above the light level at which no further increase in zeaxanthin content was observed, fluorescence characteristics indicated photoinhibitory damage. (d) A linear relationship was obtained between the ratio of variable to maximum fluorescence, F/sub V/F/sub M/, determined with the modulated fluorescence technique at room temperature, and the photon yield of O/sub 2/ evolution.« less

703 citations