scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation

01 Oct 2013-Applied Catalysis B-environmental (Elsevier)-Vol. 142, pp 553-560
TL;DR: Palladium modified mesoporous graphitic carbon nitride polymer (Pd/mpg-C 3 N 4 ) was fabricated and used for the degradation of bisphenol A (BPA) in water as discussed by the authors.
Abstract: Palladium modified mesoporous graphitic carbon nitride polymer (Pd/mpg-C 3 N 4 ) was fabricated and used for the degradation of bisphenol A (BPA) in water. Doping Pd on the surface of mpg-C 3 N 4 enhanced the light absorbance in the range of UV–vis region. Most of the embedded Pd was present as Pd 0 and could act as electron traps and facilitate the separation of photogenerated holes and electron pairs. As a result, the photocatalytic performance was improved significantly. The reaction rate constant ( k obs ) increased with the Pd loading on the surface of mpg-C 3 N 4 and the maximum was achieved with 1.50% Pd. Almost 100% of BPA (20 mg L −1 ) was photodegraded by the solids of 0.5 g L −1 Pd/mpg-C 3 N 4 after irradiation with simulated solar light for 360 min. The Pd/mpg-C 3 N 4 exhibited very stable and high efficient photocatalytic activity to BPA in a wide range of pH 3.08–11.00. It also displayed high photocatalytic activity without photocorrosion after reuse for many times. Hydroxyl radicals, photogenerated holes, and superoxide radical species were responsible for the photodegradation while the superoxide radical species were more predominant in the Pd/mpg-C 3 N 4 reaction system.
Citations
More filters
Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: The photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal coc atalysts, and Z-scheme heterojunctions.
Abstract: Semiconductor-based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g-C3N4) for visible-light photocatalytic water splitting, g-C3N4 -based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g-C3N4 -based photocatalysts, including the fabrication and nanostructure design of pristine g-C3N4 , bandgap engineering through atomic-level doping and molecular-level modification, and the preparation of g-C3N4 -based semiconductor composites. Also, the photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal cocatalysts, and Z-scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g-C3N4 -based photocatalysts are highlighted.

2,868 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations

Journal ArticleDOI
TL;DR: The enhanced performance of g-C(3)N(4)-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photoc atalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors.
Abstract: Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron–hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p–n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.

1,382 citations

Journal ArticleDOI
TL;DR: In this article, a review of the fundamental aspects of photocatalysis as a pollution remediation strategy is presented, followed by an introduction to graphitic carbon nitride as a photocatalyst, preparation strategies and its properties, and a comprehensive and critical discussion of the various most recent developments towards enhancing the visible light photocatalytic properties of g-C 3 N 4 for pollution alleviation.
Abstract: Engineering photocatalytic materials for renewable energy generation and environmental decontamination has always been a very exciting prospect to counter the global energy demands and pollution challenges. Graphitic carbon nitride (g-C 3 N 4 ), a polymeric, metal-free semiconductor with a mild band gap (2.7 eV) has become hot-spot in various scientific exploits such as environmental pollution mitigation, energy generation and storage, organic synthesis, sensors, etc. These applications exploit the interesting properties of g-C 3 N 4 such as good visible light absorption, graphene-like structure, good thermal and chemical stability and photocatalytic properties. In this review we begin with an overview of the fundamental aspects of photocatalysis as a pollution remediation strategy. This is followed by an introduction to graphitic carbon nitride as a photocatalyst, preparation strategies and its properties. Subsequently, a comprehensive and critical discussion of the various most recent developments towards enhancing the visible light photocatalytic properties of g-C 3 N 4 for pollution alleviation, selected results and important photocatalytic degradation mechanisms, is given. Summary remarks and future perspective conclude the review.

920 citations

References
More filters
Journal ArticleDOI
TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Abstract: The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.

9,751 citations

Journal ArticleDOI
16 Jul 2009-Langmuir
TL;DR: The results clearly indicate that the metal-free g-C(3)N(4) has good performance in photodegradation of organic pollutant.
Abstract: The g-C3N4 photocatalyst was synthesized by directly heating the low-cost melamine. The methyl orange dye (MO) was selected as a photodegrading goal to evaluate the photocatalytic activity of as-prepared g-C3N4. The comparison experiments indicate that the photocatalytic activity of g-C3N4 can be largely improved by the Ag loading. The strong acid radical ion (SO42− or NO3−) can promote the degrading rate of MO for g-C3N4 photocatalysis system. The MO degradation over the g-C3N4 is mainly attributed to the photoreduction process induced by the photogenerated electrons. Our results clearly indicate that the metal-free g-C3N4 has good performance in photodegradation of organic pollutant.

2,362 citations

Journal ArticleDOI
TL;DR: Graphene and graphitic carbon nitride composite photocatalysts were prepared by a combined impregnation−chemical reduction strategy involving polymerization of melamine in the presence of graphene oxide (precursors) and hydrazine hydrate (reducing agent), followed by thermal treatment at 550 °C under flowing nitrogen as mentioned in this paper.
Abstract: Graphene and graphitic carbon nitride (g-C3N4) composite photocatalysts were prepared by a combined impregnation−chemical reduction strategy involving polymerization of melamine in the presence of graphene oxide (precursors) and hydrazine hydrate (reducing agent), followed by thermal treatment at 550 °C under flowing nitrogen. The resulting graphene/g-C3N4 composite photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, UV−visible spectrophotometry, nitrogen adsorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy. The transient photocurrent response was measured for several on−off cycles of intermittent irradiation. The effect of graphene content on the rate of visible-light photocatalytic hydrogen production was studied for a series of graphene−graphitic carbon nitride composite samples containing Pt as a cocatalyst in methanol aqueous solutions. This study shows that graphene sheets a...

1,660 citations

Journal ArticleDOI
TL;DR: Bisphenol A (CAS 85-05-7) is "slightly to moderately" toxic and has low potential for bioaccumulation in aquatic organisms, with most levels nondetected.

1,601 citations

Journal ArticleDOI
23 Feb 2010-Langmuir
TL;DR: The photodegradation mechanisms for two typical dyes, rhodamine B (Rh B) and methyl orange (MO), are proposed based on comparison experiments and the electron paramagnetic resonance was used to detect the active species for the photodegrading reaction over g-C(3)N(4).
Abstract: Graphitic carbon nitride (g-C3N4) and boron-doped g-C3N4 were prepared by heating melamine and the mixture of melamine and boron oxide, respectively. X-ray diffraction, X-ray photoelectron spectroscopy, and UV−vis spectra were used to describe the properties of as-prepared samples. The electron paramagnetic resonance was used to detect the active species for the photodegradation reaction over g-C3N4. The photodegradation mechanisms for two typical dyes, rhodamine B (Rh B) and methyl orange (MO), are proposed based on our comparison experiments. In the g-C3N4 photocatalysis system, the photodegradation of Rh B and MO is attributed to the direct hole oxidation and overall reaction, respectively; however, for the MO photodegradation the reduction process initiated by photogenerated electrons is a major photocatalytic process compared with the oxidation process induced by photogenerated holes. Boron doping for g-C3N4 can promote photodegradation of Rh B because the boron doping improves the dye adsorption and...

1,495 citations