scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Photodetectors Based on Two‐Dimensional Layered Materials Beyond Graphene

01 May 2017-Advanced Functional Materials (John Wiley & Sons, Ltd)-Vol. 27, Iss: 19, pp 1603886
TL;DR: A comprehensive review on the applications of 2D-layered semiconductors as photodetectors, including photoconductors, phototransistors, and photodiodes, reported in the past five years is presented in this paper.
Abstract: Following a significant number of graphene studies, other two-dimensional (2D) layered materials have attracted more and more interest for their unique structures and distinct physical properties, which has opened a window for realizing novel electronic or optoelectronic devices. Here, we present a comprehensive review on the applications of 2D-layered semiconductors as photodetectors, including photoconductors, phototransistors, and photodiodes, reported in the past five years. The device designs, mechanisms, and performances of the photodetectors are introduced and discussed systematically. Emerging techniques to improve device performances by enhancing light-matter interactions are addressed as well. Finally, we deliver a summary and outlook to provide a guideline of the future development of this rapidly growing field.
Citations
More filters
Journal ArticleDOI
TL;DR: The general photogating may enable simultaneous high gain and high bandwidth, paving the way to explore novel high‐performance photodetectors.
Abstract: Low dimensional materials including quantum dots, nanowires, 2D materials, and so forth have attracted increasing research interests for electronic and optoelectronic devices in recent years. Photogating, which is usually observed in photodetectors based on low dimensional materials and their hybrid structures, is demonstrated to play an important role. Photogating is considered as a way of conductance modulation through photoinduced gate voltage instead of simply and totally attributing it to trap states. This review first focuses on the gain of photogating and reveals the distinction from conventional photoconductive effect. The trap- and hybrid-induced photogating including their origins, formations, and characteristics are subsequently discussed. Then, the recent progress on trap- and hybrid-induced photogating in low dimensional photodetectors is elaborated. Though a high gain bandwidth product as high as 109 Hz is reported in several cases, a trade-off between gain and bandwidth has to be made for this type of photogating. The general photogating is put forward according to another three reported studies very recently. General photogating may enable simultaneous high gain and high bandwidth, paving the way to explore novel high-performance photodetectors.

545 citations

Journal ArticleDOI
TL;DR: Two-dimensional transition metal dichalcogenides (TMDCs) have been considered as promising candidates for next generation nanoelectronics and their corresponding applications in electronic and optoelectronic devices.
Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been considered as promising candidates for next generation nanoelectronics. Because of their atomically-thin structure and high surface to volume ratio, the interfaces involved in TMDC-based devices play a predominant role in determining the device performance, such as charge injection/collection at the metal/TMDC interface, and charge carrier trapping at the dielectric/TMDC interface. On the other hand, the crystalline structures of TMDCs are enriched by a variety of intrinsic defects, including vacancies, adatoms, grain boundaries, and substitutional impurities. Customized design and engineering of the interfaces and defects provides an effective way to modulate the properties of TMDCs and finally enhance the device performance. Herein, we summarize and highlight recent advances and state-of-the-art investigations on the interface and defect engineering of TMDCs and their corresponding applications in electronic and optoelectronic devices. Various interface engineering approaches for TMDCs are overviewed, including surface charge transfer doping, TMDC/metal contact engineering, and TMDC/dielectric interface engineering. Subsequently, different types of structural defects in TMDCs are introduced. Defect engineering strategies utilized to modulate the optical and electronic properties of TMDCs, as well as the developed high-performance and functional devices are summarized. Finally, we highlight the challenges and opportunities for interface and defect engineering in TMDC materials for electronics and optoelectronics.

541 citations

Journal ArticleDOI
TL;DR: In this paper, a review of 2D materials is presented, along with their advantages and disadvantages, and some effective device-fabrication approaches, such as heterostructure approaches, are applied to further enhance the properties of two-dimensional materials; their novel device applications and opportunities are also presented.
Abstract: The technological evolution has been progressing for centuries and will possibly increase at a higher rate in the 21st century. Currently, in this age of nanotechnology, the discovery of more economical and sustainable novel materials has considerably increased. The abundance of two-dimensional (2D) materials has endowed them with a broad material platform in technical studies and in the expansion of nano- and atomic-level applications. The innovation of graphene has motivated considerable attention to the study of other novel 2D materials, known as modern day “alchemy”, by which scientists are trying to convert most possible periodic table elements into 2D material structures and forms. 2D material devices with high quality and good optical encoder performance have a multitude of industrial applications. However, their stability and large size restrict their applications, but these problems can be overcome by functionalization and substrate-based formation of 2D materials. Therefore, via this review, first, basic attributes of 2D materials are described, and the mechanisms to further enhance their properties are also summarized. Second, the applications of 2D materials are discussed, along with their advantages and disadvantages. Finally, some effective device-fabrication approaches, such as heterostructure approaches, are applied to further enhance the properties of 2D materials; their novel device applications and opportunities are also presented. This updated review may provide new avenues for 2D material synthesis and development of more efficient devices compared to conventional devices in different fields.

419 citations

Journal ArticleDOI
30 Jul 2019-ACS Nano
TL;DR: A highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction with an ultrahigh polarization sensitivity of 112.2 is achieved, which represents the best result for 2D layered material-based photodtectors.
Abstract: Polarization-sensitive photodetection in a broad spectrum range is highly desired due to the great significance in military and civilian applications. Palladium diselenide (PdSe2), a newly explored air-stable, group 10 two-dimensional (2D) noble metal dichalcogenide with a puckered pentagonal structure, holds promise for polarization-sensitive photodetection. Herein, we report a highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. Owing to the enhanced light absorption of the mixed-dimensional van der Waals heterojunction and the effective carrier collection with graphene transparent electrode, the photodetector exhibits superior device performance in terms of a large photoresponsivity, a high specific detectivity, a fast response speed to follow nanosecond pulsed light signal, and a broadband photosensitivity ranging from deep ultraviolet (DUV) to mid-infrared (MIR). Significantly, highly polarization-sensitive broadband photodetection with an ultrahigh polarization sensitivity of 112.2 is achieved, which represents the best result for 2D layered material-based photodetectors. Further, we demonstrated the high-resolution polarization imaging based on the heterojunction device. This work reveals the great potential of 2D PdSe2 for high-performance, air-stable, and polarization-sensitive broadband photodetectors.

344 citations

References
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
TL;DR: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Abstract: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy Through characterization by absorption, photoluminescence, and photoconductivity spectroscopy, we trace the effect of quantum confinement on the material's electronic structure With decreasing thickness, the indirect band gap, which lies below the direct gap in the bulk material, shifts upwards in energy by more than 06 eV This leads to a crossover to a direct-gap material in the limit of the single monolayer Unlike the bulk material, the MoS₂ monolayer emits light strongly The freestanding monolayer exhibits an increase in luminescence quantum efficiency by more than a factor of 10⁴ compared with the bulk material

12,822 citations

Journal ArticleDOI
TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Abstract: Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.

12,477 citations

Journal ArticleDOI
TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Abstract: We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides. These atomically thin sheets (essentially gigantic 2D molecules unprotected from the immediate environment) are stable under ambient conditions, exhibit high crystal quality, and are continuous on a macroscopic scale.

10,586 citations

Journal ArticleDOI
25 Jul 2013-Nature
TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Abstract: Fabrication techniques developed for graphene research allow the disassembly of many layered crystals (so-called van der Waals materials) into individual atomic planes and their reassembly into designer heterostructures, which reveal new properties and phenomena. Andre Geim and Irina Grigorieva offer a forward-looking review of the potential of layering two-dimensional materials into novel heterostructures held together by weak van der Waals interactions. Dozens of these one-atom- or one-molecule-thick crystals are known. Graphene has already been well studied but others, such as monolayers of hexagonal boron nitride, MoS2, WSe2, graphane, fluorographene, mica and silicene are attracting increasing interest. There are many other monolayers yet to be examined of course, and the possibility of combining graphene with other crystals adds even further options, offering exciting new opportunities for scientific exploration and technological innovation. Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging research area and identify possible future directions. With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

8,162 citations