scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces

01 Jan 2009-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 38, Iss: 1, pp 115-164
TL;DR: A critical review of light-driven interfacial charge-transfer reactions of transition-metal compounds anchored to mesoporous, nanocrystalline TiO2 (anatase) thin films is described.
Abstract: A critical review of light-driven interfacial charge-transfer reactions of transition-metal compounds anchored to mesoporous, nanocrystalline TiO2 (anatase) thin films is described. The review highlights molecular insights into metal-to-ligand charge transfer (MLCT) excited states, mechanisms of interfacial charge separation, inter- and intra-molecular electron transfer, and interfacial charge-recombination processes that have been garnered through various spectroscopic and electrochemical techniques. The relevance of these processes to optimization of solar-energy-conversion efficiencies is discussed (483 references).
Citations
More filters
Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: In this tutorial review, the unique mechanistic characteristics, the constitution of photodegradation systems and their performance are described and the involved radical reactions during the degradation are discussed.
Abstract: The semiconductor and the surface-adsorbed antenna molecule (dyes or other color species) can constitute efficient photochemical systems for environmental remediation. The major advantage of these systems is that they are able to achieve the degradation of organic pollutants by using visible light from the sun as energy and O2 in the air as the oxidant under ambient conditions. In this tutorial review, the unique mechanistic characteristics, the constitution of photodegradation systems and their performance are described. The involved radical reactions during the degradation are also discussed.

1,974 citations

Journal ArticleDOI
TL;DR: In this paper, a vision for a future sustainable hydrogen fuel community based on artificial photosynthesis is outlined and current progress towards artificial photosynthetic devices is reviewed, with particular focus on visible light active nanostructures.
Abstract: Hydrogen from solar-driven water splitting has the potential to provide clean energy. Current progress towards artificial photosynthetic devices is reviewed, with particular focus on visible light active nanostructures. A vision for a future sustainable hydrogen fuel community based on artificial photosynthesis is outlined.

1,703 citations

Journal ArticleDOI
TL;DR: The results show that the photogenrated electrons and holes can be separated between the different facets of semiconductor crystals, which may be useful in semiconductor physics and chemistry to construct highly efficient solar energy conversion systems.
Abstract: Charge separation is crucial for increasing the activity of semiconductor-based photocatalysts, especially in water splitting reactions. Here we show, using monoclinic bismuth vanadate crystal as a model photocatalyst, that efficient charge separation can be achieved on different crystal facets, as evidenced by the reduction reaction with photogenerated electrons and oxidation reaction with photogenerated holes, which take place separately on the {010} and {110} facets under photo-irradiation. Based on this finding, the reduction and oxidation cocatalysts are selectively deposited on the {010} and {110} facets respectively, resulting in much higher activity in both photocatalytic and photoelectrocatalytic water oxidation reactions, compared with the photocatalyst with randomly distributed cocatalysts. These results show that the photogenrated electrons and holes can be separated between the different facets of semiconductor crystals. This finding may be useful in semiconductor physics and chemistry to construct highly efficient solar energy conversion systems.

1,422 citations

References
More filters
Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

Journal ArticleDOI

23,110 citations

Book
01 Jan 1953
TL;DR: In this paper, the Hartree-Fock Approximation of many-body techniques and the Electron Gas Polarons and Electron-phonon Interaction are discussed.
Abstract: Mathematical Introduction Acoustic Phonons Plasmons, Optical Phonons, and Polarization Waves Magnons Fermion Fields and the Hartree-Fock Approximation Many-body Techniques and the Electron Gas Polarons and the Electron-phonon Interaction Superconductivity Bloch Functions - General Properties Brillouin Zones and Crystal Symmetry Dynamics of Electrons in a Magnetic Field: de Haas-van Alphen Effect and Cyclotron Resonance Magnetoresistance Calculation of Energy Bands and Fermi Surfaces Semiconductor Crystals I: Energy Bands, Cyclotron Resonance, and Impurity States Semiconductor Crystals II: Optical Absorption and Excitons Electrodynamics of Metals Acoustic Attenuation in Metals Theory of Alloys Correlation Functions and Neutron Diffraction by Crystals Recoilless Emission Green's Functions - Application to Solid State Physics Appendix: Perturbation Theory and the Electron Gas Index.

21,954 citations

Book
01 Jan 1980
TL;DR: In this paper, the authors present a comprehensive overview of electrode processes and their application in the field of chemical simulation, including potential sweep and potential sweep methods, coupled homogeneous chemical reactions, double-layer structure and adsorption.
Abstract: Major Symbols. Standard Abbreviations. Introduction and Overview of Electrode Processes. Potentials and Thermodynamics of Cells. Kinetics of Electrode Reactions. Mass Transfer by Migration and Diffusion. Basic Potential Step Methods. Potential Sweep Methods. Polarography and Pulse Voltammetry. Controlled--Current Techniques. Method Involving Forced Convention--Hydrodynamic Methods. Techniques Based on Concepts of Impedance. Bulk Electrolysis Methods. Electrode Reactions with Coupled Homogeneous Chemical Reactions. Double--Layer Structure and Adsorption. Electroactive Layers and Modified Electrodes. Electrochemical Instrumentation. Scanning Probe Techniques. Spectroelectrochemistry and Other Coupled Characterization Methods. Photoelectrochemistry and Electrogenerated Chemiluminescence. Appendix A: Mathematical Methods. Appendix B: Digital Simulations of Electrochemical Problems. Appendix C: Reference Tables. Index.

20,533 citations

Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations