scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors

01 Jan 1979-Journal of Photochemistry (Elsevier Sequoia)-Vol. 10, Iss: 1, pp 59-75
TL;DR: In this paper, the principles and applications of semiconductor electrodes in photo-electrochemical (PEC) cells (liquid junction photovoltaic, photoelectro-synthetic, photocatalytic) are described.
About: This article is published in Journal of Photochemistry.The article was published on 1979-01-01. It has received 886 citations till now. The article focuses on the topics: Photoelectrochemistry.
Citations
More filters
Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the photodriven conversion of liquid water to gaseous hydrogen and oxygen, a process similar to that of biological photosynthesis, using sunlight to drive a thermodynamically uphill reaction of an abundant material to produce fuel.
Abstract: The maintenance of life on earth, our food, oxygen, and fossil fuels depend upon the conversion of solar energy into chemical energy by biological photosynthesis carried out by green plants and photosynthetic bacteria. In this process sunlight and available abundant raw materials (water, carbon dioxide) are converted to oxygen and the reduced organic species that serve as food and fuel. A long-standing challenge has been the development of a practical artificial photosynthetic system that can roughly mimic the biological one, not by duplicating the self-organization and reproduction of the biological system nor the aesthetic beauty of trees and plants, but rather by being able to use sunlight to drive a thermodynamically uphill reaction of an abundant materials to produce a fuel. In this Account we focus on “water splitting”, the photodriven conversion of liquid water to gaseous hydrogen and oxygen:

2,377 citations

Journal ArticleDOI
TL;DR: In this article, the state of the art and future challenges in photocatalytic water splitting with a focus on the recent progress of our own research are discussed. But the focus is on the development of cocatalysts and related physical and materials chemistry.
Abstract: Water splitting to form hydrogen and oxygen using solar energy in the presence of semiconductor photocatalysts has long been studied as a potential means of clean, large-scale fuel production. In general, overall water splitting can be achieved when a photocatalyst is modified with a suitable cocatalyst. It is therefore important to develop both photocatalysts and cocatalysts. In the past five years, there has been significant progress in water splitting photocatalysis, especially in the development of cocatalysts and related physical and materials chemistry. This work describes the state of the art and future challenges in photocatalytic water splitting, with a focus on the recent progress of our own research.

2,203 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations

Journal ArticleDOI
TL;DR: UV-Visible ار راد ن .د TiO2 ( تیفرظ راون مان هب نورتکلا یاراد لماش VB و ) رگید اب لاقتنا VB (CO2) .
Abstract: UV-Visible ار راد ن .د TiO2 ( تیفرظ راون مان هب نورتکلا یاراد یژرنا زارت لماش VB و ) رگید زارت ی یژرنا اب ( ییاناسر راون مان هب نورتکلا زا یلاخ و رتلااب VB یم ) .دشاب ت ود نیا نیب یژرنا توافت یژرنا فاکش زار ، پگ دناب هدیمان یم .دوش هک ینامز زا نورتکلا لاقتنا VB هب VB یم ماجنا دریگ ، TiO2 اب ودح یژرنا بذج د ev 2 / 3 ، نورتکلا تفج کی دیلوت یم هرفح .دیامن و نورتکلا هرفح ی نا اب هدش دیلوت یم کرتشم حطس هب لاقت ثعاب دناوت شنکاو ماجنا اه یی ددرگ . TiO2 دربراک ،دراد یدایز یاه هلمج زا یم ناوت اوه یگدولآ هیفصت یارب (CO2) و بآ و ... نآ زا هدافتسا درک .

2,055 citations

References
More filters
Journal ArticleDOI
07 Jul 1972-Nature
TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Abstract: ALTHOUGH the possibility of water photolysis has been investigated by many workers, a useful method has only now been developed. Because water is transparent to visible light it cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm (ref. 1).

27,819 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured spectrophotometric absorption coefficients and found that only a fraction of the light absorbed resulted in electrochemically reactive holes and fit the current potential curves within ± 1% to the depletion layer theory of Gartner.
Abstract: Photoelectrochemical properties of high purity and were investigated. Photocurrent efficiencies were measured in various electrolytes and found to depend on the electrolyte used. Direct measurement of spectrophotometric absorption coefficients showed them to be significantly higher than those deduced from i‐V curves indicating that only a fraction of the light absorbed resulted in electrochemically reactive holes. When the lower absorption coefficients were employed the current‐potential curves could be fit within ±1% to the depletion layer theory of Gartner.

687 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that there are at least two kinds of metal-C0 bonds involved which undoubtedly have different bond energies and that their approximate ratio is 5/1, the type of site greatest in quantity being that which bonds most strongly with CO.
Abstract: Suggesting that there are at least two kinds of metal-C0 bonds involved which undoubtedly have different bond energies and that their approximate ratio is 5/1, the type of site greatest in quantity being that which bonds most strongly with CO. There may be other types of sites or these two kinds may actually include subtypes which have bond energies so close as to be indistinguishable by this experimental technique. Since the room temperature rate constant for displacement for process I is about 7 times greater than that for process 11, the activation energy for process I1 must be 1200 cal greater than that for process I. This suggests that the CO displaced in process I1 might be bonded to the metal 1200 cal more strongly than that which is displaced

536 citations