scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Photographic Study of Nucleate Pool Boiling on a Horizontal Surface

R. F. Gaertner1
01 Feb 1965-Journal of Heat Transfer-transactions of The Asme (American Society of Mechanical Engineers Digital Collection)-Vol. 87, Iss: 1, pp 17-27
About: This article is published in Journal of Heat Transfer-transactions of The Asme.The article was published on 1965-02-01. It has received 308 citations till now. The article focuses on the topics: Nucleate boiling & Boiling.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the critical heat flux (CHF) in pool boiling from a flat square heater immersed in nanofluid (water mixed with extremely small amount of nanosized particles) was investigated.
Abstract: The present study is to enhance the critical heat flux (CHF) in pool boiling from a flat square heater immersed in nanofluid (water mixed with extremely small amount of nanosized particles). The test results show that the enhancement of CHF was drastic when nanofluid is used as a cooling liquid instead of pure water. The experiment was performed to measure and compare pool boiling curves of pure water and nanofluid at the pressure of 2.89 psia (Tsat=60 °C) using 1×1 cm2 polished copper surfaces as a boiling surface. The tested nanofluid contains alumina (Al2O3) nanoparticles dispersed in distilled and deionized water. Tested concentrations of nanoparticles range from 0 g/l to 0.05 g/l. The measured pool boiling curves of nanofluids saturated at 60 °C have demonstrated that the CHF increases dramatically (∼200% increase) compared to pure water case; however, the nucleate boiling heat transfer coefficients appear to be about the same.

911 citations

Journal ArticleDOI
TL;DR: In this paper, a theoretical model is developed to describe the hydrodynamic behavior of the vapor-liquid interface of a bubble at the heater surface leading to the initiation of critical heat flux (CHF) condition.
Abstract: A theoretical model is developed to describe the hydrodynamic behavior of the vapor-liquid interface of a bubble at the heater surface leading to the initiation of critical heat flux (CHF) condition. The momentum flux resulting from evaporation at the bubble base is identified to be an important parameter. A model based on theoretical considerations is developed for upward-facing surfaces with orientations of 0 deg (horizontal) to 90 deg (vertical). It includes the surface-liquid interaction effects through the dynamic receding contact angle. The CHF in pool boiling for water, refrigerants and cryogenic liquids is correctly predicted by the model, and the parametric trends of CHF with dynamic receding contact angle and subcooling are also well represented

734 citations

Journal ArticleDOI
TL;DR: In this article, the critical heat flux (CHF) was introduced for columnar vapor stems distributed in a liquid layer wetting a heated surface, and a new hydrodynamic model was developed for pool boiling and forced convection boiling.

596 citations

Journal ArticleDOI
TL;DR: In this paper, a review examines recent advances made in predicting boiling heat fluxes, including some key results from the past, including nucleate boiling, maximum heat flux, transition boiling, and film boiling.
Abstract: ▪ Abstract This review examines recent advances made in predicting boiling heat fluxes, including some key results from the past. The topics covered are nucleate boiling, maximum heat flux, transition boiling, and film boiling. The review focuses on pool boiling of pure liquids, but flow boiling is also discussed briefly.

575 citations

Journal ArticleDOI
TL;DR: In this paper, a high-speed, high-resolution infrared camera was used to visualize dynamic thermal patterns on the heater's surface over a broad range of heat fluxes, starting from the onset of nucleation and up to boiling crisis.

288 citations