scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Photon-energy-dependent light effects in organic nano-floating-gate nonvolatile memories

01 Oct 2014-Organic Electronics (North-Holland)-Vol. 15, Iss: 10, pp 2486-2491
TL;DR: In this paper, a pentacene-based organic field effect transistor nonvolatile memory, in which polystyrene covered Au nanoparticles act as the nano-floating-gate, is probed under different illumination conditions.
About: This article is published in Organic Electronics.The article was published on 2014-10-01. It has received 40 citations till now. The article focuses on the topics: Photon energy & Non-volatile memory.
Citations
More filters
Journal ArticleDOI
TL;DR: This review focuses on the advancements of using organic field-effect transistors (OFETs) in flexible electronic applications in the past 10 years, and introduces organic semiconductors (OSCs), followed by their applications in various device configurations and their mechanisms.
Abstract: Flexible electronic devices have attracted a great deal of attention in recent years due to their flexibility, reduced complexity and lightweight. Such devices can conformably attach themselves to any bendable surface and can possess diverse transduction mechanisms. Consequently, with continued emphasis on innovation and development, major technological breakthroughs have been achieved in this area. This review focuses on the advancements of using organic field-effect transistors (OFETs) in flexible electronic applications in the past 10 years. In addition, to the above mentioned features, OFETs have multiple advantages such as low-cost, readout integration, large-area coverage, and power efficiency, which yield synergy. To begin with, we have introduced organic semiconductors (OSCs), followed by their applications in various device configurations and their mechanisms. Later, the use of OFETs in flexible sensor applications is detailed with multiple examples. Special attention is paid to discussing the effects induced on physical parameters of OFETs with respect to variations in external stimuli. The final section provides an outlook on the mechanical aspects of OSCs, activation and revival processes of sensory layers, small area analysis, and pattern recognition techniques for electronic devices.

195 citations

Journal ArticleDOI
01 Mar 2018-Small
TL;DR: In this Review, typical information on device structure, memory characteristics, device operation mechanisms, mechanical properties, challenges, and recent progress of the above categories of flexible data storage devices based on organic nanoscaled materials is summarized.
Abstract: Following the trend of miniaturization as per Moore's law, and facing the strong demand of next-generation electronic devices that should be highly portable, wearable, transplantable, and lightweight, growing endeavors have been made to develop novel flexible data storage devices possessing nonvolatile ability, high-density storage, high-switching speed, and reliable endurance properties. Nonvolatile organic data storage devices including memory devices on the basis of floating-gate, charge-trapping, and ferroelectric architectures, as well as organic resistive memory are believed to be favorable candidates for future data storage applications. In this Review, typical information on device structure, memory characteristics, device operation mechanisms, mechanical properties, challenges, and recent progress of the above categories of flexible data storage devices based on organic nanoscaled materials is summarized.

131 citations

Journal ArticleDOI
TL;DR: Benefiting from its high density, multifunctionality, low power consumption, and multilevel data storage, photonic memory devices hold future promise for built-in, non-volatile memory and reconstructed logic operation and are expected to bridge this capacity gap.
Abstract: Digital technology is one of the greatest modern breakthroughs, allowing sounds, words and images to be stored in binary form. However, there is a huge gap between the amount of data created daily and the capacities of existing storage media. Developing multibit memory in which 2n levels, typically represented by distinguishable current levels, can be achieved in a single cell is a critical specification for achieving high-density memory devices. Compared with electrically operated memory, photonic memory—in which electrical read-out is orthogonal to the photo-programming operation—promises high differentiation among different data levels. From another aspect, benefiting from its high density, multifunctionality, low power consumption, and multilevel data storage, photonic memory devices hold future promise for built-in, non-volatile memory and reconstructed logic operation and are expected to bridge this capacity gap. Thus, we present a review on the development of photonic memory, with a view towards inspiring more intriguing ideas on the elegant selection of materials and design of novel device structures that may finally induce major progress in the manufacture and application of photonic memory.

83 citations

Journal ArticleDOI
TL;DR: Two kinds of pentacene-based OFET memories with solution-processed amorphous and β-phase poly(9,9-dioctylfluorene) (PFO) films as charge trapping layers are fabricated, demonstrating the synergistic effects of combining both merits of polymer and nanoparticles into one electret.
Abstract: Despite remarkable advances in the development of organic field-effect transistor (OFET) memories over recent years, the charge trapping elements remain confined to the critical electrets of polymers, nanoparticles, or ferroelectrics. Nevertheless, rare reports are available on the complementary advantages of different types of trapping elements integrated in one single OFET memory. To address this issue, we fabricated two kinds of pentacene-based OFET memories with solution-processed amorphous and β-phase poly(9,9-dioctylfluorene) (PFO) films as charge trapping layers, respectively. Compared to the amorphous film, the β-PFO film has self-doped nanostructures (20–120 nm) and could act as natural charge trapping elements, demonstrating the synergistic effects of combining both merits of polymer and nanoparticles into one electret. Consequently, the OFET memory with β-PFO showed nearly 26% increment in the storage capacity and a pronounced memory window of ∼45 V in 20 ms programming time. Besides, the reten...

79 citations


Cites background from "Photon-energy-dependent light effec..."

  • ...can be further improved.(19-21) In view of the above facts, however, a photosensitive electret that...

    [...]

References
More filters
Proceedings Article
01 Jan 1969

16,580 citations

01 Mar 2009

14,586 citations

Journal ArticleDOI
J. C. Scott1, L. D. Bozano1
TL;DR: In this article, a review of the materials used in switching devices is presented, focusing particularly on the role of filamentary conduction and deliberately introduced or accidental nanoparticles, and the reported device parameters (on-off ratio, on-state current, switching time, retention time, cycling endurance, and rectification) are compared with those that would be necessary for a viable memory technology.
Abstract: Many organic electronic devices exhibit switching behavior, and have therefore been proposed as the basis for a nonvolatile memory (NVM) technology. This Review summarizes the materials that have been used in switching devices, and describes the variety of device behavior observed in their charge-voltage (capacitive) or current-voltage (resistive) response. A critical summary of the proposed charge-transport mechanisms for resistive switching is given, focusing particularly on the role of filamentary conduction and of deliberately introduced or accidental nanoparticles. The reported device parameters (on-off ratio, on-state current, switching time, retention time, cycling endurance, and rectification) are compared with those that would be necessary for a viable memory technology.

964 citations

Journal ArticleDOI
TL;DR: In this article, the role of π-conjugated materials in the operation of nonvolatile memory devices is reviewed and a review of the state of the art with respect to these target specifications is presented.
Abstract: Organic molecules and semiconductors have been proposed as active part of a large variety of nonvolatile memory devices, including resistors, diodes and transistors. In this review, we focus on electrically reprogrammable nonvolatile memories. We classify several possible devices according to their operation principle and critically review the role of the π-conjugated materials in the device operation. We propose specifications for applications for organic nonvolatile memory and review the state of the art with respect to these target specifications. Conclusions are drawn regarding further work on materials and device architectures.

487 citations

Journal ArticleDOI
TL;DR: In this paper, a solution-processed poly[9,9-dioctylfluorenyl-2,7-diyl]-co-(bithiophene)] (F8T2) nano floating gate memory (NFGM) with a top-gate/bottom-contact device configuration is reported.
Abstract: Organic field-effect transistor (FET) memory is an emerging technology with the potential to realize light-weight, low-cost, flexible charge storage media. Here, solution-processed poly[9,9-dioctylfluorenyl-2,7-diyl]-co-(bithiophene)] (F8T2) nano floating gate memory (NFGM) with a top-gate/bottom-contact device configuration is reported. A reversible shift in the threshold voltage (V Th ) and reliable memory characteristics was achieved by the incorporation of thin Au nanoparticles (NPs) as charge storage sites for negative charges (electrons) at the interface between polystyrene and cross-linked poly(4-vinylphenol). The F8T2 NFGM showed relatively high field-effect mobility (μ FET ) (0.02 cm 2 V -1 s -1 ) for an amorphous semiconducting polymer with a large memory window (ca. 30 V), a high on/off ratio (more than 10 4 ) during writing and erasing with an operation voltage of 80 V of gate bias in a relatively short timescale (less than 1 s), and a retention time of a few hours. This top-gated polymer NFGM could be used as an organic transistor memory element for organic flash memory.

249 citations