scispace - formally typeset
Open AccessBook

Photonic Crystals: Molding the Flow of Light

Reads0
Chats0
TLDR
In this paper, the authors developed the theoretical tools of photonics using principles of linear algebra and symmetry, emphasizing analogies with traditional solid-state physics and quantum theory, and investigated the unique phenomena that take place within photonic crystals at defect sites and surfaces, from one to three dimensions.
Abstract
Since it was first published in 1995, Photonic Crystals has remained the definitive text for both undergraduates and researchers on photonic band-gap materials and their use in controlling the propagation of light. This newly expanded and revised edition covers the latest developments in the field, providing the most up-to-date, concise, and comprehensive book available on these novel materials and their applications. Starting from Maxwell's equations and Fourier analysis, the authors develop the theoretical tools of photonics using principles of linear algebra and symmetry, emphasizing analogies with traditional solid-state physics and quantum theory. They then investigate the unique phenomena that take place within photonic crystals at defect sites and surfaces, from one to three dimensions. This new edition includes entirely new chapters describing important hybrid structures that use band gaps or periodicity only in some directions: periodic waveguides, photonic-crystal slabs, and photonic-crystal fibers. The authors demonstrate how the capabilities of photonic crystals to localize light can be put to work in devices such as filters and splitters. A new appendix provides an overview of computational methods for electromagnetism. Existing chapters have been considerably updated and expanded to include many new three-dimensional photonic crystals, an extensive tutorial on device design using temporal coupled-mode theory, discussions of diffraction and refraction at crystal interfaces, and more. Richly illustrated and accessibly written, Photonic Crystals is an indispensable resource for students and researchers.Extensively revised and expanded Features improved graphics throughout Includes new chapters on photonic-crystal fibers and combined index-and band-gap-guiding Provides an introduction to coupled-mode theory as a powerful tool for device design Covers many new topics, including omnidirectional reflection, anomalous refraction and diffraction, computational photonics, and much more.

read more

Citations
More filters
Journal ArticleDOI

Plasmonics: merging photonics and electronics at nanoscale dimensions.

TL;DR: The current status and future prospects of plAsmonics in various applications including plasmonic chips, light generation, and nanolithography are reviewed.
Journal ArticleDOI

High-impedance electromagnetic surfaces with a forbidden frequency band

TL;DR: In this paper, a new type of metallic structure has been developed that is characterized by having high surface impedance, which is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements and distributed in a two-dimensional lattice.
Journal ArticleDOI

Topological Photonics

TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Journal ArticleDOI

Meep: A flexible free-software package for electromagnetic simulations by the FDTD method

TL;DR: This paper describes Meep, a popular free implementation of the finite-difference time-domain (FDTD) method for simulating electromagnetism, and focuses on aspects of implementing a full-featured FDTD package that go beyond standard textbook descriptions of the algorithm.
MonographDOI

The Theory of Composites

TL;DR: Some of the greatest scientists including Poisson, Faraday, Maxwell, Rayleigh, and Einstein have contributed to the theory of composite materials Mathematically, it is the study of partial differential equations with rapid oscillations in their coefficients Although extensively studied for more than a hundred years, an explosion of ideas in the last five decades has dramatically increased our understanding of the relationship between the properties of the constituent materials, the underlying microstructure of a composite, and the overall effective moduli which govern the macroscopic behavior as mentioned in this paper.