scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Photooxidation of organic impurities in water using thin films of titanium dioxide

01 Jun 1987-The Journal of Physical Chemistry (American Chemical Society)-Vol. 91, Iss: 12, pp 3328-3333
TL;DR: In this article, it was shown that the observed apparent first-order dependence and the change in rate constant with concentration could by explained in terms of the integrated form of the Langmuir adsorption isotherm.
Abstract: Results of the destruction of organic solutes in a simple, thin film TiO2 reactor are described. The reactor was illuminated with a 20-W blacklight UV fluorescent tube and the aqueous stream containing the organic solute flowed past the stationary photocatalyst. In the continuous recirculation mode, the destructive rate of each solute obeyed approximately first-order kinetics. The reaction rate constant decreased with increasing solute concentration. The times for 50% destruction of 500 cmT of 10 M solutions of each of the solutes salicylic acid, phenol, 2-chlorophenol, 4-chlorophenol, benzoic acid, 2-naphthol, naphthalene, and fluorescein were 7.1, 7.2, 8.2, 8.7, 6.9, 8.5, 4.3, and 6.4 min, respectively. It was found that the observed apparent first-order dependence and the change in rate constant with concentration could by explained in terms of the integrated form of the Langmuir adsorption isotherm. A marked dependence of the destruction rate on flow rate was observed and an expression developed which allows the calculation of the destruction curve with good precision at any solute concentration and flow rate. A corresponding curve was observed for the formation of carbon dioxide from salicylic acid solution. It was shown that hydroxylation of the aromatic ring to give salicylic acid is a minormore » reaction path in the destruction of benzoic acid. The maximum quantum yield for the destruction of salicyclic acid at 25C was found to be 0.022. The activation energy for the photooxidation of salicyclic acid was determined to be 11.0 +/- 0.8 kJ mol .« less
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy is discussed in this paper.
Abstract: Scientific studies on photocatalysis started about two and a half decades ago. Titanium dioxide (TiO 2 ), which is one of the most basic materials in our daily life, has emerged as an excellent photocatalyst material for environmental purification. In this review, current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy are discussed together with some fundamental aspects. A novel photoinduced superhydrophilic phenomenon involving TiO 2 and its applications are presented.

6,802 citations


Cites background from "Photooxidation of organic impuritie..."

  • ...One of the first reports on the preparation of TiO2 films was that of Matthews [43]....

    [...]

01 Jan 2008
TL;DR: A review of the current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy is discussed in this article.
Abstract: Abstract Scientific studies on photocatalysis started about two and a half decades ago. Titanium dioxide (TiO 2 ), which is one of the most basic materials in our daily life, has emerged as an excellent photocatalyst material for environmental purification. In this review, current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy are discussed together with some fundamental aspects. A novel photoinduced superhydrophilic phenomenon involving TiO 2 and its applications are presented.

6,294 citations

Journal ArticleDOI
TL;DR: In this paper, photo-induced superhydrophilicity was used on the surface of a wide-band gap semiconductor like titanium dioxide (TiO 2 ) for photocatalytic activity towards environmentally hazardous compounds.

4,241 citations

Journal ArticleDOI
TL;DR: In this paper, the progress of the scientific research on TiO2 photocatalysis as well as its industrial applications are reviewed, and future prospects of this field mainly based on the present authors' work.
Abstract: Photocatalysis has recently become a common word and various products using photocatalytic functions have been commercialized. Among many candidates for photocatalysts, TiO2 is almost the only material suitable for industrial use at present and also probably in the future. This is because TiO2 has the most efficient photoactivity, the highest stability and the lowest cost. More significantly, it has been used as a white pigment from ancient times, and thus, its safety to humans and the environment is guaranteed by history. There are two types of photochemical reaction proceeding on a TiO2 surface when irradiated with ultraviolet light. One includes the photo-induced redox reactions of adsorbed substances, and the other is the photo-induced hydrophilic conversion of TiO2 itself. The former type has been known since the early part of the 20th century, but the latter was found only at the end of the century. The combination of these two functions has opened up various novel applications of TiO2, particularly in the field of building materials. Here, we review the progress of the scientific research on TiO2 photocatalysis as well as its industrial applications, and describe future prospects of this field mainly based on the present authors' work.

3,008 citations

Journal ArticleDOI
TL;DR: A comprehensive analysis of the reported effects of dopants on the anatase to rutile phase transformation and the mechanisms by which these effects are brought about is presented in this article, yielding a plot of the cationic radius versus the valence characterised by a distinct boundary between inhibitors and promoters.
Abstract: Titanium dioxide, TiO2, is an important photocatalytic material that exists as two main polymorphs, anatase and rutile. The presence of either or both of these phases impacts on the photocatalytic performance of the material. The present work reviews the anatase to rutile phase transformation. The synthesis and properties of anatase and rutile are examined, followed by a discussion of the thermodynamics of the phase transformation and the factors affecting its observation. A comprehensive analysis of the reported effects of dopants on the anatase to rutile phase transformation and the mechanisms by which these effects are brought about is presented in this review, yielding a plot of the cationic radius versus the valence characterised by a distinct boundary between inhibitors and promoters of the phase transformation. Further, the likely effects of dopant elements, including those for which experimental data are unavailable, on the phase transformation are deduced and presented on the basis of this analysis.

2,570 citations