scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Photopolymerization in 3D Printing

20 Feb 2019-Vol. 1, Iss: 4, pp 593-611
TL;DR: The field of 3D printing is continuing its rapid development in both academic and industrial research environments as mentioned in this paper, which offers flexibility over the final properties of the 3D printed materials (such as optical, chemical and mechanical properties) using versatile polymer chemistry.
Abstract: The field of 3D printing is continuing its rapid development in both academic and industrial research environments. The development of 3D printing technologies has opened new implementations in rapid prototyping, tooling, dentistry, microfluidics, biomedical devices, tissue engineering, drug delivery, etc. Among different 3D printing techniques, photopolymerization-based process (such as stereolithography and digital light processing) offers flexibility over the final properties of the 3D printed materials (such as optical, chemical, and mechanical properties) using versatile polymer chemistry. The strategy behind the 3D photopolymerization is based on using monomers/oligomers in liquid state (in the presence of photoinitiators) that can be photopolymerized (via radical or cationic mechanism) upon exposure to light source of different wavelengths (depending on the photoinitiator system). An overview of recent evolutions in the field of photopolymerization-based 3D printing and highlights of novel 3D print...
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the 3D printing parameters, printing structures, slicing methods, and post-processing techniques significantly influence the surface roughness, printing accuracy, and mechanical properties of the manufactured dental device; yet, the optimization of each one may vary depending on the clinical application of the additively manufactured device.

103 citations

Journal ArticleDOI
TL;DR: A versatile and general visible-light-based printing method was shown to afford stiff and soft objects with feature sizes <100 μm, build speeds up to 45 mm/h, and mechanical isotropy, rivaling modern UV-based 3D printing technology and providing a foundation from which bio- and composite-printing can emerge.
Abstract: Light-driven 3D printing to convert liquid resins into solid objects (i.e., photocuring) has traditionally been dominated by engineering disciplines, yielding the fastest build speeds and highest r...

101 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive guide to the stakeholders who want to utilize or develop an additive manufacturing process for polymeric composites and provide an outlook on future research opportunities on AM-fabricated composites from design to fabrication.
Abstract: Polymeric composites with multi-functionality offer significant advantages over metals, including lightweight, high strength and stiffness, corrosion and fatigue resistance, etc. Additively manufactured composites draw intensive attention over the past decade due to that they exhibit the large potential to extend their applications from rapid prototyping to functional end-use components. Moreover, advances in additive manufacturing (AM) open new perspectives for the next generation of design and manufacturing of composites, which possess spatially digitalized and materialized arrangement of material/structure in a voxel-by-voxel manner. This review examines the work performed in this fast-growing field and elaborates its future perspectives and potentials. Specifically, the polymer AM processes incorporating different types of reinforcements are discussed in terms of mechanism, feedstocks, their advantages, and constraints. Then, the AM-driven designs for polymeric composites on multiscale and for multi-functional applications are emphasized. Further, emerging research topics including digital composites, intelligence/data-driven design approaches, and four-dimensional printing are further addressed with the careful analysis of existing gaps and future research trends. Finally, this review is concluded with an outlook on future research opportunities on AM-fabricated composites from design to fabrication. This review aims to provide a comprehensive guide to the stakeholders who want to utilize or develop an AM process for polymeric composites.

93 citations

Journal ArticleDOI
15 Sep 2021-Polymers
TL;DR: In this article, a comparative review of polymer-based 3D printing processes is presented, highlighting different aspects of these printing methods and serving as a guide to select a suitable print material and 3D print technique for the targeted polymeric material-based applications.
Abstract: Additive manufacturing (AM) or 3D printing is a digital manufacturing process and offers virtually limitless opportunities to develop structures/objects by tailoring material composition, processing conditions, and geometry technically at every point in an object. In this review, we present three different early adopted, however, widely used, polymer-based 3D printing processes; fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA) to create polymeric parts. The main aim of this review is to offer a comparative overview by correlating polymer material-process-properties for three different 3D printing techniques. Moreover, the advanced material-process requirements towards 4D printing via these print methods taking an example of magneto-active polymers is covered. Overall, this review highlights different aspects of these printing methods and serves as a guide to select a suitable print material and 3D print technique for the targeted polymeric material-based applications and also discusses the implementation practices towards 4D printing of polymer-based systems with a current state-of-the-art approach.

90 citations

Journal ArticleDOI
TL;DR: Additive manufacturing (AM) is energizing the fields of chemistry and materials science to develop new inks for new applications within fields such as aerospace, robotics, and healthcare as discussed by the authors.
Abstract: Additive manufacturing (AM) is energizing the fields of chemistry and materials science to develop new inks for new applications within fields such as aerospace, robotics, and healthcare. AM enable...

85 citations

References
More filters
Journal ArticleDOI
TL;DR: The radical-mediated thiol-ene reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield.
Abstract: Following Sharpless' visionary characterization of several idealized reactions as click reactions, the materials science and synthetic chemistry communities have pursued numerous routes toward the identification and implementation of these click reactions. Herein, we review the radical-mediated thiol-ene reaction as one such click reaction. This reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield. Further, the thiol-ene reaction is most frequently photoinitiated, particularly for photopolymerizations resulting in highly uniform polymer networks, promoting unique capabilities related to spatial and temporal control of the click reaction. The reaction mechanism and its implementation in various synthetic methodologies, biofunctionalization, surface and polymer modification, and polymerization are all reviewed.

3,229 citations

Journal ArticleDOI
TL;DR: The use of both synthetic and natural hydrogels as scaffolds for three-dimensional cell culture as well as synthetic hydrogel hybrids that incorporate sophisticated biochemical and mechanical cues as mimics of the native extracellular matrix are discussed.
Abstract: Methods for culturing mammalian cells ex vivo are increasingly needed to study cell and tissue physiology and to grow replacement tissue for regenerative medicine. Two-dimensional culture has been the paradigm for typical in vitro cell culture; however, it has been demonstrated that cells behave more natively when cultured in three-dimensional environments. Permissive, synthetic hydrogels and promoting, natural hydrogels have become popular as three-dimensional cell culture platforms; yet, both of these systems possess limitations. In this perspective, we discuss the use of both synthetic and natural hydrogels as scaffolds for three-dimensional cell culture as well as synthetic hydrogels that incorporate sophisticated biochemical and mechanical cues as mimics of the native extracellular matrix. Ultimately, advances in synthetic-biologic hydrogel hybrids are needed to provide robust platforms for investigating cell physiology and fabricating tissue outside of the organism.

2,298 citations

Journal ArticleDOI
TL;DR: Polymers are by far the most utilized class of materials for AM and their design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed.
Abstract: Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting....

2,136 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering.
Abstract: The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs. Due to the intrinsically limited mechanical properties and functionalities of printed pure polymer parts, there is a critical need to develop printable polymer composites with high performance. 3D printing offers many advantages in the fabrication of composites, including high precision, cost effective and customized geometry. This article gives an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering. Common 3D printing techniques such as fused deposition modeling, selective laser sintering, inkjet 3D printing, stereolithography, and 3D plotting are introduced. The formation methodology and the performance of particle-, fiber- and nanomaterial-reinforced polymer composites are emphasized. Finally, important limitations are identified to motivate the future research of 3D printing.

2,132 citations