scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Photopolymerization in 3D Printing

20 Feb 2019-Vol. 1, Iss: 4, pp 593-611
TL;DR: The field of 3D printing is continuing its rapid development in both academic and industrial research environments as mentioned in this paper, which offers flexibility over the final properties of the 3D printed materials (such as optical, chemical and mechanical properties) using versatile polymer chemistry.
Abstract: The field of 3D printing is continuing its rapid development in both academic and industrial research environments. The development of 3D printing technologies has opened new implementations in rapid prototyping, tooling, dentistry, microfluidics, biomedical devices, tissue engineering, drug delivery, etc. Among different 3D printing techniques, photopolymerization-based process (such as stereolithography and digital light processing) offers flexibility over the final properties of the 3D printed materials (such as optical, chemical, and mechanical properties) using versatile polymer chemistry. The strategy behind the 3D photopolymerization is based on using monomers/oligomers in liquid state (in the presence of photoinitiators) that can be photopolymerized (via radical or cationic mechanism) upon exposure to light source of different wavelengths (depending on the photoinitiator system). An overview of recent evolutions in the field of photopolymerization-based 3D printing and highlights of novel 3D print...
Citations
More filters
Journal ArticleDOI
TL;DR: The proposed method provides a valuable and environmentally friendly alternative to currently available synthetic routes, overcoming their typical disadvantages related to the used solvents and harsh conditions, and opens up a sustainable route for converting polyesters into functionalized oligomeric derivatives, which can potentially find application in 3D printing of customized biomedical devices.
Abstract: A bio-based polymeric ink for stereolithography developed through a two-step solvent-free process is herein proposed. Specifically, low-molecular-weight poly(hydroxybutyrate) (PHB)-diol oligomers are prepared via molten transesterification of bacterial PHB with 1,4-butanediol. Transesterification conditions such as diol concentration, catalyst amount, and reaction time are studied for optimizing the final oligomers' molecular weight and structural features. In the second step, the oligomeric hydroxyl terminals are converted into methacrylate moieties through a solvent-free end-capping reaction and diluted in propylene carbonate in order to obtain a photo-polymerizable ink with suitable viscosity. The ink is UV-cured, and the obtained material properties are investigated by FT-IR and differential scanning calorimetry measurements. The proposed method provides a valuable and environmentally friendly alternative to currently available synthetic routes, overcoming their typical disadvantages related to the used solvents and harsh conditions. Moreover, it opens up a sustainable route for converting polyesters into functionalized oligomeric derivatives, which can potentially find application in 3D printing of customized biomedical devices.

10 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed to trigger supramolecular self-assembly during the process by a gemini imidazolium-based low-molecular-weight gelator, allowing printing of certain monomers.

10 citations

Journal ArticleDOI
TL;DR: In this article, an updated overview of the employment of biphase inks and how they are adapted to different additive manufacturing technologies or vice versa is provided, with functional perspectives for a wide variety of research fields, including tissue engineering, catalysis, aerospace, environmental science, electrochemistry, energy and sound absorption and light engineering materials.
Abstract: To date, Additive Manufacturing (AM) has come to the fore as a major disruptive technology embodying two main research lines – developing increasingly sophisticated printing technologies and new processable materials. The latter has fostered a tremendous leap in AM technological advancement, allowing 3D printing to play a central role in dictating the tailorable settings for material design. In particular, the manufacturing of three-dimensional (3D) objects with functional hierarchical porous structure is of the utmost importance for numerous research areas, including tissue engineering, catalysis, aerospace, environmental science, electrochemistry, energy and sound absorption and light engineering materials. Biphasic inks such as emulsions, foams, and solid dispersions represent viable templating systems to realise multiscale porosity. The combination of AM techniques and biphasic inks provide pivotal control over multiple levels of material structure and function, enabling the use of advanced materials with unprecedented 3D architectures as well as physical, chemical, and mechanical properties. The related potential benefits are significant, with functional perspectives for a wide variety of research fields. In this concise review, we provide an updated overview of the employment of biphase inks and show how they are adapted to different AM technologies or vice versa.

10 citations

Journal ArticleDOI
TL;DR: In this paper , a novel visible light induced 3D printing system with high resolution and short printing time using dimanesedecacarbonyl (Mn2 (CO)10 ) in combination with organic halides is reported.
Abstract: 3D printing technology offers solutions for numerous needs in industry and the daily life of individuals. In recent years, most research efforts have focused on this technology as the market share has grown and requirements have become specified in their related fields. In this work, a novel visible light induced 3D printing system with high resolution and short printing time using dimanganesedecacarbonyl (Mn2 (CO)10 ) in combination with organic halides is reported. The radicals formed through halogen abstraction by photochemically generated manganese pentacarbonyl from organic halides with high quantum efficiency initiate the polymerization of acrylic resins. The kinetics of the process using various halide-containing molecules in the photoinitiaiting system were investigated with real-time FTIR and photo-DSC analyses, and the characteristics of 3D printouts were presented and compared with that of the commercial photoinitiator, 2,4,6-trimethylbenzoyl)phosphine oxide (TPO) without Mn2 (CO)10 . The results obtained confirm that the combination of Mn2 (CO)10 and structurally diverse organic halides is a class of promising 3D system for various applications. This article is protected by copyright. All rights reserved.

10 citations

Journal ArticleDOI
TL;DR: Under natural light, lignin can produce a small amount of free radicals, resulting in yellowing of Lignin-related products as discussed by the authors, but the activity of these free radicals is very low, so that few stu...
Abstract: Under natural light, lignin can produce a small amount of free radicals, resulting in yellowing of lignin-related products. However, the activity of these free radicals is very low, so that few stu...

10 citations

References
More filters
Journal ArticleDOI
TL;DR: The radical-mediated thiol-ene reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield.
Abstract: Following Sharpless' visionary characterization of several idealized reactions as click reactions, the materials science and synthetic chemistry communities have pursued numerous routes toward the identification and implementation of these click reactions. Herein, we review the radical-mediated thiol-ene reaction as one such click reaction. This reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield. Further, the thiol-ene reaction is most frequently photoinitiated, particularly for photopolymerizations resulting in highly uniform polymer networks, promoting unique capabilities related to spatial and temporal control of the click reaction. The reaction mechanism and its implementation in various synthetic methodologies, biofunctionalization, surface and polymer modification, and polymerization are all reviewed.

3,229 citations

Journal ArticleDOI
TL;DR: The use of both synthetic and natural hydrogels as scaffolds for three-dimensional cell culture as well as synthetic hydrogel hybrids that incorporate sophisticated biochemical and mechanical cues as mimics of the native extracellular matrix are discussed.
Abstract: Methods for culturing mammalian cells ex vivo are increasingly needed to study cell and tissue physiology and to grow replacement tissue for regenerative medicine. Two-dimensional culture has been the paradigm for typical in vitro cell culture; however, it has been demonstrated that cells behave more natively when cultured in three-dimensional environments. Permissive, synthetic hydrogels and promoting, natural hydrogels have become popular as three-dimensional cell culture platforms; yet, both of these systems possess limitations. In this perspective, we discuss the use of both synthetic and natural hydrogels as scaffolds for three-dimensional cell culture as well as synthetic hydrogels that incorporate sophisticated biochemical and mechanical cues as mimics of the native extracellular matrix. Ultimately, advances in synthetic-biologic hydrogel hybrids are needed to provide robust platforms for investigating cell physiology and fabricating tissue outside of the organism.

2,298 citations

Journal ArticleDOI
TL;DR: Polymers are by far the most utilized class of materials for AM and their design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed.
Abstract: Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting....

2,136 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering.
Abstract: The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs. Due to the intrinsically limited mechanical properties and functionalities of printed pure polymer parts, there is a critical need to develop printable polymer composites with high performance. 3D printing offers many advantages in the fabrication of composites, including high precision, cost effective and customized geometry. This article gives an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering. Common 3D printing techniques such as fused deposition modeling, selective laser sintering, inkjet 3D printing, stereolithography, and 3D plotting are introduced. The formation methodology and the performance of particle-, fiber- and nanomaterial-reinforced polymer composites are emphasized. Finally, important limitations are identified to motivate the future research of 3D printing.

2,132 citations