scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Photopolymerization in 3D Printing

20 Feb 2019-Vol. 1, Iss: 4, pp 593-611
TL;DR: The field of 3D printing is continuing its rapid development in both academic and industrial research environments as mentioned in this paper, which offers flexibility over the final properties of the 3D printed materials (such as optical, chemical and mechanical properties) using versatile polymer chemistry.
Abstract: The field of 3D printing is continuing its rapid development in both academic and industrial research environments. The development of 3D printing technologies has opened new implementations in rapid prototyping, tooling, dentistry, microfluidics, biomedical devices, tissue engineering, drug delivery, etc. Among different 3D printing techniques, photopolymerization-based process (such as stereolithography and digital light processing) offers flexibility over the final properties of the 3D printed materials (such as optical, chemical, and mechanical properties) using versatile polymer chemistry. The strategy behind the 3D photopolymerization is based on using monomers/oligomers in liquid state (in the presence of photoinitiators) that can be photopolymerized (via radical or cationic mechanism) upon exposure to light source of different wavelengths (depending on the photoinitiator system). An overview of recent evolutions in the field of photopolymerization-based 3D printing and highlights of novel 3D print...
Citations
More filters
Journal ArticleDOI
17 Feb 2021-Polymers
TL;DR: In this article, three photopolymerization technologies, namely, stereolithography (SLA), digital light processing (DLP), and continuous digital light process (CDLP), are reviewed.
Abstract: Additive manufacturing (3D printing) has significantly changed the prototyping process in terms of technology, construction, materials, and their multiphysical properties. Among the most popular 3D printing techniques is vat photopolymerization, in which ultraviolet (UV) light is deployed to form chains between molecules of liquid light-curable resin, crosslink them, and as a result, solidify the resin. In this manuscript, three photopolymerization technologies, namely, stereolithography (SLA), digital light processing (DLP), and continuous digital light processing (CDLP), are reviewed. Additionally, the after-cured mechanical properties of light-curable resin materials are listed, along with a number of case studies showing their applications in practice. The manuscript aims at providing an overview and future trend of the photopolymerization technology to inspire the readers to engage in further research in this field, especially regarding developing new materials and mathematical models for microrods and bionic structures.

191 citations

Journal ArticleDOI
04 Jun 2020
TL;DR: This review paper summarizes a few typical applications of P μSL including mechanical metamaterials, optical components, 4D printing, bioinspired materials and biomedical applications, and offers perspectives on the directions of the further development of PμSL based 3D printing technology.
Abstract: Projection Micro Stereolithography (PμSL) is a high-resolution (up to 0.6 μm) 3D printing technology based on area projection triggered photopolymerization, and capable of fabricating complex 3D architectures covering multiple scales and with multiple materials. This paper reviews the recent development of the PμSL based 3D printing technologies, together with the related applications. It introduces the working principle, the commercialized products, and the recent multiscale, multimaterial printing capability of PμSL as well as some functional photopolymers that are suitable to PμSL. This review paper also summarizes a few typical applications of PμSL including mechanical metamaterials, optical components, 4D printing, bioinspired materials and biomedical applications, and offers perspectives on the directions of the further development of PμSL based 3D printing technology.

174 citations


Cites background from "Photopolymerization in 3D Printing"

  • ...The photopolymerization is a free radical based polymerization, and includes four main steps: radical generation, initiation, propagation, and termination [62, 63]....

    [...]

Journal ArticleDOI
01 Sep 2020-Small
TL;DR: In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crossl linking outcomes and construct performance is highlighted.
Abstract: Three-dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue-like constructs in future.

150 citations

Journal ArticleDOI
TL;DR: Improved tissue adhesion of the bioinspired MN allows for more stable and robust performance for drug delivery, biofluid collection, and biosensing.

143 citations

Journal ArticleDOI
TL;DR: An overview of the vat polymerization techniques, their unique applications in the fields of drug delivery and medical device fabrication, material examples and the advantages they provide within healthcare, is provided.

136 citations

References
More filters
Journal ArticleDOI
TL;DR: This paper develops a novel hydrophilic/hydrophobic composite structure by using photopolymers, and finds the rubbery nature of the materials used in this composite provides desirable actuation speed and actuation force.
Abstract: Swelling-induced shape transformation has been widely investigated and applied to the design and fabrication of smart polymer devices, such as soft robotics, biomedical devices, and origami patterns. Previous shape-shifting designs using soft hydrogels have several limitations, including relatively small actuation force, slow responsive speed, and relatively complicated fabrication process. In this paper, we develop a novel hydrophilic/hydrophobic composite structure by using photopolymers. The rubbery nature of the materials used in this composite provides desirable actuation speed and actuation force. The photocurable polymer system could be easily patterned by using the digital light processing technique. Experiments and theoretical analysis were conducted to study the actuation process. We also fabricated several three-dimensional water-responsive shape-shifting structures, including structures with sequential actuation behavior. Finally, the directional bending behavior of the hydrophilic/hydrophobic...

91 citations

Journal ArticleDOI
TL;DR: A promising photocrosslinking process to generate cell-laden methacrylate gelatin (GelMA) hydrogels in the presence of VA-086 photoinitiator using a ultraviolet LED source is characterized and a reliable photopolymerization protocol for cell embedding is defined.
Abstract: The ability to replicate in vitro the native extracellular matrix (ECM) features and to control the three-dimensional (3D) cell organization plays a fundamental role in obtaining functional engineered bioconstructs. In tissue engineering (TE) applications, hydrogels have been successfully implied as biomatrices for 3D cell embedding, exhibiting high similarities to the natural ECM and holding easily tunable mechanical properties. In the present study, we characterized a promising photocrosslinking process to generate cell-laden methacrylate gelatin (GelMA) hydrogels in the presence of VA-086 photoinitiator using a ultraviolet LED source. We investigated the influence of prepolymer concentration and light irradiance on mechanical and biomimetic properties of resulting hydrogels. In details, the increasing of gelatin concentration resulted in enhanced rheological properties and shorter polymerization time. We then defined and validated a reliable photopolymerization protocol for cell embedding (1.5% VA-086, LED 2 mW/cm2) within GelMA hydrogels, which demonstrated to support bone marrow stromal cells viability when cultured up to 7 days. Moreover, we showed how different mechanical properties, derived from different crosslinking parameters, strongly influence cell behavior. In conclusion, this protocol can be considered a versatile tool to obtain biocompatible cell-laden hydrogels with properties easily adaptable for different TE applications.

91 citations

Journal ArticleDOI
TL;DR: In this article, the effect of a thermally activated delayed fluorescence (TADF) property in new photoinitiators/photoredox catalysts was investigated and four carbazole derivatives A1−A4 exhibiting a TADF character were synthesized and proposed for the first time as high performance visible light photoin initiators/metal-free photoredox catalyst, in the presence of an amine or/and an iodonium salt.
Abstract: This paper is devoted to the effect of a thermally activated delayed fluorescence (TADF) property in new photoinitiators/photoredox catalysts. Four carbazole derivatives A1–A4 exhibiting a TADF character are synthesized and proposed for the first time as high performance visible light photoinitiators/metal-free photoredox catalysts, in the presence of an amine or/and an iodonium salt, for both the free radical polymerization (FRP) of (meth)acrylates and the cationic polymerization (CP) of epoxides upon visible light exposure using light-emitting diodes (LEDs) at 405, 455, and 477 nm. Interestingly, the impact of the substituent effect on the excited state lifetimes and therefore on the photoinitiating ability of a series of substituted carbazoles was clearly evidenced and examined. Upon bromination of the carbazole core, clear effects on the excited state lifetimes and light absorption were demonstrated, enabling to tune the initiator performance. Excellent polymerization initiating abilities are found, a...

89 citations

Patent
20 Oct 1994
TL;DR: In this paper, a method useful for stereolithography that yields enhanced photospeed, as well as a photocurable polymer composition well adapted for use with same, are disclosed A preferred combination includes 1,2-dimethoxy-2-phenyl acetophenone, benzophenone and triphenyl phosphine combined with a polyurethane (meth)acrylate oligomer
Abstract: A method useful for stereolithography that yields enhanced photospeed, as well as a photocurable polymer composition well adapted for use with same, are disclosed A preferred combination includes 1,2-dimethoxy-2-phenyl acetophenone, benzophenone, and triphenyl phosphine combined with a polyurethane (meth)acrylate oligomer

88 citations

Journal ArticleDOI
TL;DR: In this paper, a high performance visible light photoinitiator for both the free radical polymerization of methacrylates (thick films) and the cationic polymerization (CP) of epoxides (thin films) upon visible light exposure using light emitting diodes (LEDs).
Abstract: Zinc tetraphenylporphyrin (ZnTPP) is proposed as a high performance visible light photoinitiator for both the free radical polymerization (FRP) of methacrylates (thick films) and the cationic polymerization (CP) of epoxides (thin films) upon visible light exposure using light emitting diodes (LEDs) at 405, 455, 477, and 530 nm. ZnTPP combined with an iodonium salt shows excellent polymerization initiating abilities and high final conversions were obtained. Remarkably, for the ligand alone (tetraphenylporphyrin derivative, H2TPMP) used as photoinitiator, no polymerization occurs, indicating the importance of the metal in the initiating complex for an efficient process. A full picture of the involved chemical mechanisms is given. The high performance of ZnTPP as cationic initiating system is also well shown for new cationic 3D printing resins upon exposure to LED projector at 405 nm.

87 citations